From 49ec44fa8df990ac6d2045030ae74d4a994dda50 Mon Sep 17 00:00:00 2001 From: Wangjiawei Date: Tue, 13 May 2025 15:25:01 +0800 Subject: [PATCH] =?UTF-8?q?=E4=B8=8A=E4=BC=A0=E6=96=87=E4=BB=B6=E8=87=B3?= =?UTF-8?q?=20=E5=BC=82=E5=B8=B8=E8=81=9A=E9=9B=86=E5=BA=A6=E8=AE=BA?= =?UTF-8?q?=E6=96=870513?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 异常聚集度论文0513/author.aux | 79 +++++ 异常聚集度论文0513/author.log | 446 +++++++++++++++++++++++++++ 异常聚集度论文0513/author.pdf | Bin 0 -> 221054 bytes 异常聚集度论文0513/author.synctex.gz | Bin 0 -> 48378 bytes 异常聚集度论文0513/author.tex | 434 ++++++++++++++++++++++++++ 5 files changed, 959 insertions(+) create mode 100644 异常聚集度论文0513/author.aux create mode 100644 异常聚集度论文0513/author.log create mode 100644 异常聚集度论文0513/author.pdf create mode 100644 异常聚集度论文0513/author.synctex.gz create mode 100644 异常聚集度论文0513/author.tex diff --git a/异常聚集度论文0513/author.aux b/异常聚集度论文0513/author.aux new file mode 100644 index 0000000..a54b23a --- /dev/null +++ b/异常聚集度论文0513/author.aux @@ -0,0 +1,79 @@ +\relax +\citation{MultiCameraReview,DeepLearningMultiCam} +\@writefile{toc}{\contentsline {title}{Anomalous Crowd Gathering Prediction Method Based on Spatial-Temporal Graph Convolutional Network in Multi-Camera Surveillance Systems}{1}{}\protected@file@percent } +\@writefile{toc}{\authcount {1}} +\@writefile{toc}{\contentsline {author}{No Author Given}{1}{}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction.}{1}{}\protected@file@percent } +\citation{MultiCameraReview} +\citation{DeepLearningMultiCam} +\citation{TopologyAwareMCN,LearningSpatialRelations} +\citation{SaturationSuppression,NonlinearWeightingAnomaly} +\citation{STGCNTraffic} +\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Temporal evolution of abnormal aggregation density over 12 consecutive frames. Each node represents a surveillance camera in the simulated urban network, and the edge indicates physical connectivity or proximity between cameras. The color intensity of each node reflects the computed abnormal aggregation degree at that time step. Darker nodes indicate higher levels of abnormal crowd gathering. This visualization illustrates how potential anomaly hotspots evolve over time and migrate through the camera network. }}{2}{}\protected@file@percent } +\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} +\newlabel{fig:aggregation-sequence}{{1}{2}{}{figure.1}{}} +\citation{TopologyAwareMCN} +\citation{LearningSpatialRelations} +\citation{GNNReview} +\citation{KipfWelling} +\@writefile{toc}{\contentsline {section}{\numberline {2}Related Works.}{3}{}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Camera Topology Diagram.}{3}{}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Graph Convolutional Neural Network.}{3}{}\protected@file@percent } +\citation{GG,DD,DG,MS,IG,MD,MO} +\citation{GAT} +\citation{GraphSAGE} +\citation{AT,AG,AGL,AH} +\citation{STGCNTraffic} +\citation{TimeGNN} +\citation{StemGNN} +\citation{DyGraphformer} +\citation{H-STGCN} +\citation{STS-GCN} +\citation{GCNInformer} +\citation{GRAST-Frost} +\citation{Stagcn} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}The Combination of Time Series Prediction and Graph Neural Networks.}{4}{}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {3}Method.}{5}{}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.1} Spatial-Temporal Graph Convolutional Network.}{5}{}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Anomaly Aggregation Degree.}{6}{}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {4}Experiment.}{9}{}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The simulation visualization interface for crowd aggregation; grey areas represent roads, red dots indicate abnormal gathering crowds, and blue dots represent normal pedestrians. The larger red markers are the destinations of the gatherings. }}{10}{}\protected@file@percent } +\newlabel{fig:aggregation-sequence}{{2}{10}{}{figure.2}{}} +\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Incidental Crowd Scenario Hit Rate Comparison}}{11}{}\protected@file@percent } +\newlabel{tab:incidental_hit_rate}{{1}{11}{}{table.1}{}} +\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Demonstration Scenario Hit Rate Comparison}}{11}{}\protected@file@percent } +\newlabel{tab:demonstration_hit_rate}{{2}{11}{}{table.2}{}} +\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Urban Riot Scenario Hit Rate Comparison}}{11}{}\protected@file@percent } +\newlabel{tab:riot_hit_rate}{{3}{11}{}{table.3}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5} Conclusion. }{11}{}\protected@file@percent } +\bibcite{MultiCameraReview}{1} +\bibcite{DeepLearningMultiCam}{2} +\bibcite{TopologyAwareMCN}{3} +\bibcite{LearningSpatialRelations}{4} +\bibcite{NonlinearWeightingAnomaly}{5} +\bibcite{SaturationSuppression}{6} +\bibcite{STGCNTraffic}{7} +\bibcite{GNNReview}{8} +\bibcite{GAT}{9} +\bibcite{GraphSAGE}{10} +\bibcite{KipfWelling}{11} +\bibcite{TimeGNN}{12} +\bibcite{StemGNN}{13} +\bibcite{DyGraphformer}{14} +\bibcite{H-STGCN}{15} +\bibcite{STS-GCN}{16} +\bibcite{GCNInformer}{17} +\bibcite{GRAST-Frost}{18} +\bibcite{Stagcn}{19} +\bibcite{AT}{20} +\bibcite{AG}{21} +\bibcite{AGL}{22} +\bibcite{AH}{23} +\bibcite{MS}{24} +\bibcite{GG}{25} +\bibcite{DD}{26} +\bibcite{IG}{27} +\bibcite{DG}{28} +\bibcite{MD}{29} +\bibcite{MO}{30} +\gdef \@abspage@last{13} diff --git a/异常聚集度论文0513/author.log b/异常聚集度论文0513/author.log new file mode 100644 index 0000000..5539cb3 --- /dev/null +++ b/异常聚集度论文0513/author.log @@ -0,0 +1,446 @@ +This is XeTeX, Version 3.141592653-2.6-0.999997 (TeX Live 2025) (preloaded format=xelatex 2025.4.1) 13 MAY 2025 11:35 +entering extended mode + restricted \write18 enabled. + %&-line parsing enabled. +**author.tex +(./author.tex +LaTeX2e <2024-11-01> patch level 2 +L3 programming layer <2025-01-18> +(./svproc.cls +Document Class: svproc 2016/07/20 v1.3 + LaTeX document class for Proceedings volumes +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/base/article.cls +Document Class: article 2024/06/29 v1.4n Standard LaTeX document class +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/base/size10.clo +File: size10.clo 2024/06/29 v1.4n Standard LaTeX file (size option) +) +\c@part=\count192 +\c@section=\count193 +\c@subsection=\count194 +\c@subsubsection=\count195 +\c@paragraph=\count196 +\c@subparagraph=\count197 +\c@figure=\count198 +\c@table=\count199 +\abovecaptionskip=\skip49 +\belowcaptionskip=\skip50 +\bibindent=\dimen141 +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/tools/multicol.sty +Package: multicol 2024/09/14 v1.9i multicolumn formatting (FMi) +\c@tracingmulticols=\count266 +\mult@box=\box52 +\multicol@leftmargin=\dimen142 +\c@unbalance=\count267 +\c@collectmore=\count268 +\doublecol@number=\count269 +\multicoltolerance=\count270 +\multicolpretolerance=\count271 +\full@width=\dimen143 +\page@free=\dimen144 +\premulticols=\dimen145 +\postmulticols=\dimen146 +\multicolsep=\skip51 +\multicolbaselineskip=\skip52 +\partial@page=\box53 +\last@line=\box54 +\mc@boxedresult=\box55 +\maxbalancingoverflow=\dimen147 +\mult@rightbox=\box56 +\mult@grightbox=\box57 +\mult@firstbox=\box58 +\mult@gfirstbox=\box59 +\@tempa=\box60 +\@tempa=\box61 +\@tempa=\box62 +\@tempa=\box63 +\@tempa=\box64 +\@tempa=\box65 +\@tempa=\box66 +\@tempa=\box67 +\@tempa=\box68 +\@tempa=\box69 +\@tempa=\box70 +\@tempa=\box71 +\@tempa=\box72 +\@tempa=\box73 +\@tempa=\box74 +\@tempa=\box75 +\@tempa=\box76 +\@tempa=\box77 +\@tempa=\box78 +\@tempa=\box79 +\@tempa=\box80 +\@tempa=\box81 +\@tempa=\box82 +\@tempa=\box83 +\@tempa=\box84 +\@tempa=\box85 +\@tempa=\box86 +\@tempa=\box87 +\@tempa=\box88 +\@tempa=\box89 +\@tempa=\box90 +\@tempa=\box91 +\@tempa=\box92 +\@tempa=\box93 +\@tempa=\box94 +\@tempa=\box95 +\c@minrows=\count272 +\c@columnbadness=\count273 +\c@finalcolumnbadness=\count274 +\last@try=\dimen148 +\multicolovershoot=\dimen149 +\multicolundershoot=\dimen150 +\mult@nat@firstbox=\box96 +\colbreak@box=\box97 +\mc@col@check@num=\count275 +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/oberdiek/aliascnt.sty +Package: aliascnt 2018/09/07 v1.5 Alias counters (HO) +) +\c@chapter=\count276 +LaTeX Font Info: Redeclaring math symbol \Gamma on input line 369. +LaTeX Font Info: Redeclaring math symbol \Delta on input line 370. +LaTeX Font Info: Redeclaring math symbol \Theta on input line 371. +LaTeX Font Info: Redeclaring math symbol \Lambda on input line 372. +LaTeX Font Info: Redeclaring math symbol \Xi on input line 373. +LaTeX Font Info: Redeclaring math symbol \Pi on input line 374. +LaTeX Font Info: Redeclaring math symbol \Sigma on input line 375. +LaTeX Font Info: Redeclaring math symbol \Upsilon on input line 376. +LaTeX Font Info: Redeclaring math symbol \Phi on input line 377. +LaTeX Font Info: Redeclaring math symbol \Psi on input line 378. +LaTeX Font Info: Redeclaring math symbol \Omega on input line 379. +\tocchpnum=\dimen151 +\tocsecnum=\dimen152 +\tocsectotal=\dimen153 +\tocsubsecnum=\dimen154 +\tocsubsectotal=\dimen155 +\tocsubsubsecnum=\dimen156 +\tocsubsubsectotal=\dimen157 +\tocparanum=\dimen158 +\tocparatotal=\dimen159 +\tocsubparanum=\dimen160 +\@tempcntc=\count277 +\fnindent=\dimen161 +\c@@inst=\count278 +\c@@auth=\count279 +\c@auco=\count280 +\instindent=\dimen162 +\authrun=\box98 +\authorrunning=\toks17 +\tocauthor=\toks18 +\titrun=\box99 +\titlerunning=\toks19 +\toctitle=\toks20 +\c@theorem=\count281 +\c@case=\count282 +\c@conjecture=\count283 +\c@corollary=\count284 +\c@definition=\count285 +\c@example=\count286 +\c@exercise=\count287 +\c@lemma=\count288 +\c@note=\count289 +\c@problem=\count290 +\c@property=\count291 +\c@proposition=\count292 +\c@question=\count293 +\c@solution=\count294 +\c@remark=\count295 +\headlineindent=\dimen163 +) (d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/url/url.sty +\Urlmuskip=\muskip17 +Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc. +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsmath/amsmath.sty +Package: amsmath 2024/11/05 v2.17t AMS math features +\@mathmargin=\skip53 + +For additional information on amsmath, use the `?' option. +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsmath/amstext.sty +Package: amstext 2021/08/26 v2.01 AMS text + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsmath/amsgen.sty +File: amsgen.sty 1999/11/30 v2.0 generic functions +\@emptytoks=\toks21 +\ex@=\dimen164 +)) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsmath/amsbsy.sty +Package: amsbsy 1999/11/29 v1.2d Bold Symbols +\pmbraise@=\dimen165 +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsmath/amsopn.sty +Package: amsopn 2022/04/08 v2.04 operator names +) +\inf@bad=\count296 +LaTeX Info: Redefining \frac on input line 233. +\uproot@=\count297 +\leftroot@=\count298 +LaTeX Info: Redefining \overline on input line 398. +LaTeX Info: Redefining \colon on input line 409. +\classnum@=\count299 +\DOTSCASE@=\count300 +LaTeX Info: Redefining \ldots on input line 495. +LaTeX Info: Redefining \dots on input line 498. +LaTeX Info: Redefining \cdots on input line 619. +\Mathstrutbox@=\box100 +\strutbox@=\box101 +LaTeX Info: Redefining \big on input line 721. +LaTeX Info: Redefining \Big on input line 722. +LaTeX Info: Redefining \bigg on input line 723. +LaTeX Info: Redefining \Bigg on input line 724. +\big@size=\dimen166 +LaTeX Font Info: Redeclaring font encoding OML on input line 742. +LaTeX Font Info: Redeclaring font encoding OMS on input line 743. +\macc@depth=\count301 +LaTeX Info: Redefining \bmod on input line 904. +LaTeX Info: Redefining \pmod on input line 909. +LaTeX Info: Redefining \smash on input line 939. +LaTeX Info: Redefining \relbar on input line 969. +LaTeX Info: Redefining \Relbar on input line 970. +\c@MaxMatrixCols=\count302 +\dotsspace@=\muskip18 +\c@parentequation=\count303 +\dspbrk@lvl=\count304 +\tag@help=\toks22 +\row@=\count305 +\column@=\count306 +\maxfields@=\count307 +\andhelp@=\toks23 +\eqnshift@=\dimen167 +\alignsep@=\dimen168 +\tagshift@=\dimen169 +\tagwidth@=\dimen170 +\totwidth@=\dimen171 +\lineht@=\dimen172 +\@envbody=\toks24 +\multlinegap=\skip54 +\multlinetaggap=\skip55 +\mathdisplay@stack=\toks25 +LaTeX Info: Redefining \[ on input line 2953. +LaTeX Info: Redefining \] on input line 2954. +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsfonts/amssymb.sty +Package: amssymb 2013/01/14 v3.01 AMS font symbols + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsfonts/amsfonts.sty +Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support +\symAMSa=\mathgroup4 +\symAMSb=\mathgroup5 +LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. +LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' +(Font) U/euf/m/n --> U/euf/b/n on input line 106. +)) (d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/booktabs/booktabs.st +y +Package: booktabs 2020/01/12 v1.61803398 Publication quality tables +\heavyrulewidth=\dimen173 +\lightrulewidth=\dimen174 +\cmidrulewidth=\dimen175 +\belowrulesep=\dimen176 +\belowbottomsep=\dimen177 +\aboverulesep=\dimen178 +\abovetopsep=\dimen179 +\cmidrulesep=\dimen180 +\cmidrulekern=\dimen181 +\defaultaddspace=\dimen182 +\@cmidla=\count308 +\@cmidlb=\count309 +\@aboverulesep=\dimen183 +\@belowrulesep=\dimen184 +\@thisruleclass=\count310 +\@lastruleclass=\count311 +\@thisrulewidth=\dimen185 +) (d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/graphics/graphicx.sty +Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR) + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/graphics/keyval.sty +Package: keyval 2022/05/29 v1.15 key=value parser (DPC) +\KV@toks@=\toks26 +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/graphics/graphics.sty +Package: graphics 2024/08/06 v1.4g Standard LaTeX Graphics (DPC,SPQR) + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/graphics/trig.sty +Package: trig 2023/12/02 v1.11 sin cos tan (DPC) +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/graphics-cfg/graphics.c +fg +File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration +) +Package graphics Info: Driver file: xetex.def on input line 106. + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/graphics-def/xetex.def +File: xetex.def 2022/09/22 v5.0n Graphics/color driver for xetex +)) +\Gin@req@height=\dimen186 +\Gin@req@width=\dimen187 +) (d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/caption/caption.sty +Package: caption 2023/08/05 v3.6o Customizing captions (AR) + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/caption/caption3.sty +Package: caption3 2023/07/31 v2.4d caption3 kernel (AR) +\caption@tempdima=\dimen188 +\captionmargin=\dimen189 +\caption@leftmargin=\dimen190 +\caption@rightmargin=\dimen191 +\caption@width=\dimen192 +\caption@indent=\dimen193 +\caption@parindent=\dimen194 +\caption@hangindent=\dimen195 +Package caption Info: Unknown document class (or package), +(caption) standard defaults will be used. +Package caption Info: \@makecaption = \long macro:#1#2->\small \vskip \abovecap +tionskip \sbox \@tempboxa {{\bfseries #1.} #2}\ifdim \wd \@tempboxa >\hsize {\b +fseries #1.} #2\par \else \global \@minipagefalse \hb@xt@ \hsize {\hfil \box \@ +tempboxa \hfil }\fi \vskip \belowcaptionskip on input line 1175. +) + +Package caption Warning: Unknown document class (or package), +(caption) standard defaults will be used. +See the caption package documentation for explanation. + +\c@caption@flags=\count312 +\c@continuedfloat=\count313 +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/caption/subcaption.sty +Package: subcaption 2023/07/28 v1.6b Sub-captions (AR) +Package caption Info: New subtype `subfigure' on input line 238. +\c@subfigure=\count314 +Package caption Info: New subtype `subtable' on input line 238. +\c@subtable=\count315 +) (d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/float/float.sty +Package: float 2001/11/08 v1.3d Float enhancements (AL) +\c@float@type=\count316 +\float@exts=\toks27 +\float@box=\box102 +\@float@everytoks=\toks28 +\@floatcapt=\box103 +) +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/l3backend/l3backend-xet +ex.def +File: l3backend-xetex.def 2024-05-08 L3 backend support: XeTeX +\g__graphics_track_int=\count317 +\l__pdf_internal_box=\box104 +\g__pdf_backend_annotation_int=\count318 +\g__pdf_backend_link_int=\count319 +) (./author.aux + +LaTeX Warning: Label `fig:aggregation-sequence' multiply defined. + +) +\openout1 = `author.aux'. + +LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for TU/lmr/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 29. +LaTeX Font Info: ... okay on input line 29. +Package caption Info: Begin \AtBeginDocument code. +Package caption Info: float package is loaded. +Package caption Info: End \AtBeginDocument code. +LaTeX Font Info: Trying to load font information for U+msa on input line 57. + + (d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsfonts/umsa.fd +File: umsa.fd 2013/01/14 v3.01 AMS symbols A +) +LaTeX Font Info: Trying to load font information for U+msb on input line 57. + + +(d:/texlive+texstudio/texlive/2025/texmf-dist/tex/latex/amsfonts/umsb.fd +File: umsb.fd 2013/01/14 v3.01 AMS symbols B +) +Title too long for running head. Please supply +a shorter form with \titlerunning prior to \maketitle +File: camera_topology.pdf Graphic file (type pdf) + + +Underfull \vbox (badness 1189) has occurred while \output is active [] + + + +[1 + + +] +Overfull \hbox (5.07648pt too wide) in paragraph at lines 93--95 +[]\TU/lmr/m/n/10 Recent research in intelligent security has increasingly focus +ed on multi‑camera + [] + + + +[2] + +[3] +Overfull \hbox (6.9354pt too wide) in paragraph at lines 116--117 +[]\TU/lmr/m/n/10 In recent years, improved models of GCN have emerged in an end +less stream[25, + [] + + + +[4] + +[5] + +[6] + +[7] + +[8] +File: figs/simulator.png Graphic file (type bmp) + + + +[9] + +[10] + +[11] +Overfull \hbox (8.67648pt too wide) in paragraph at lines 304--305 +[]\TU/lmr/m/n/10 The above experimental results fully demonstrate the advantage + of the weighted + [] + + +Underfull \hbox (badness 4739) in paragraph at lines 341--342 +[]\TU/lmr/m/n/9 Veličković, Petar, et al.: Graph attention networks. In: arxiv +preprint + [] + + + +[12] + +[13] (./author.aux) + *********** +LaTeX2e <2024-11-01> patch level 2 +L3 programming layer <2025-01-18> + *********** + + +LaTeX Warning: There were multiply-defined labels. + + ) +Here is how much of TeX's memory you used: + 4407 strings out of 473832 + 71207 string characters out of 5724897 + 469926 words of memory out of 5000000 + 27440 multiletter control sequences out of 15000+600000 + 563726 words of font info for 67 fonts, out of 8000000 for 9000 + 1348 hyphenation exceptions out of 8191 + 57i,14n,65p,2344b,326s stack positions out of 10000i,1000n,20000p,200000b,200000s + +Output written on author.pdf (13 pages). diff --git a/异常聚集度论文0513/author.pdf b/异常聚集度论文0513/author.pdf new file mode 100644 index 0000000000000000000000000000000000000000..266b9de3c708e6c43050209b2332a8e3fbf2693a GIT binary patch literal 221054 zcmeFYgLhud*FW6YwryLDZ5xekJB@AIb{eO#ZL4vUG`8RLzQ51&w(IF{t^NVub***n znK?7(?D-7#XYVtIL{3PAhJlt1l4SS%lBRVM~YZFIPd`2dACLSJ02Sz(Bu( zW?-a@+0v)k+3a?`Wv5i2g(u9d?yxx1ohAyYpd8yBb!WXYwU|-7wNUUs_@s8cYG=J_ zygswOJQzIgsj{`uKf&ugy2>EzBQG8{K5`U)^zwY$>7cg$lyu%sT~6hb?9*0#=~8r{ zwjt`e=ILle;+a%j=f`a^<1Vk6&Duz3_8#2S(FdW;GbfUS#PVV~+`C!G zB{P#3Hi=6btzNQO{no&z@qG5lL0;Zh)^VP}!~L1BZj+*by7GJ}2{aUIFo*R?#cEj# zQ+=>gQJ-|^7zEXcXgNEK!I!UHqjEN!UN-xBDQ9mdj_n?9a{-_w4{YMZ4x zaqpw2qrJfJokZ^tq7kCxCki!>wl`+{9HKCWb3Xs&vOK%dEgZhwpR;p}p;t+Y*JdIEIr0=>{RZH0 zLrH{Io+KV+9$LAIkgV$3(R;g5ro}cq*S@XLDyXs#h}t2^HpCM$w`M(^hcLVOJN9OA z+0KUwr|cu7N2v69tihr#vwFScd1XN-nCDzrA}h1+aH4jGTM5oqknD>{PNvk90od1 ztVUhZY7{%{cypmLpvO1{%F}@+lw1BGO*R7e@+;@34|S<+r{#`f*Ml$$%47;wv~UkF z$u?YcTCboOf@Cb>?H$Sm%-@G6!q>uA8NhZYm4F;-@kzrXfvna$u}rk&B-vEPbd3y3 zfl}x$WJF`;Ra^yE3^@3W%Qy*&Cb^FOaodDY?`;M2_z~T#OLTTb6xy<7 zwPKyK-wAYP6N%h>`9`l!?dNk7*@+d+l8Am(CDA3x*{q;Ge2LhX2FT~CJV*q{odLap zi7aQ-^5IvVqQ?#jFRin-e>(qyo%q9gj9;i;CbB-njWSuFrw&OV;Tg>TRc=tWN zbXwLxZ#-vSkH}0+}7ed0PCm zSs}dcO{dzjj)$eKiv#Db*E(|fS#-)tia|)QCZ|_Yfu{ALt+od0ZR3HyOP2m_PkCS}Ix6CPa-oUqO#Vu!4_GvGHxlVq3C_*RE@ zIOp2LgH?iYf}%6pbiP3BQN23A+gE)_EX7CS_4i35yeu4dfA8+v`Ya(=NU zvtaxXRken}OB6T`Jp?Yt-Ny_MQ=rDuwesyaZS)$sspuu}1)t@J=>^G= z1{JzsAp}2{3I9mRcY9O5%Q^le;;O(WUi8^Bx|s;t8`n7L z_L8(uE~pM9wO)&O^VnVuB+(OBDYd5461E>O^Gf`O9+S_y`W(t>q_yAo=Mq+t)^>x) zejaeWRMsiQ1A^rjnZjkE**yFTUQYo#zuzNv;_#XVP5J9P{8~-y)jF)qeG30R)h_SU!(Lf{EYWgtYmz80sw!LB zY-sq=T>LR>s2L;MbE5W_d*vD7JGJ9`L-89R~(i4fZ6|Snz{#s|_MR9=p z<5WG!;H!<12b=bp24pzi7^FC4NJ%^Wq8GBA6FIM`8L7@nCSt1qVuip6#Sj%%8sS6d z1uAy!c%t+55*iLgZ``oGt0CJT$*^-DKirEgV@-s}MJ4 z1x(8Xka0z>r9%s>X0Ose~*t6mklXj@@*wra~FO4t_hBW8>)C(ZfK@Nj^~IjF5fS#|JWfdJL(W$@Q*~H79i)U9Lb1kV4bb-LIyQo#ZBm(V5+&BE$v|?S$Qx5^juvw49wpOF ziNZ;~7x^=mK)=tb)iOMcF4)~5-DwTL+&VVGYZV9+{N}QVf4E0^c^5Bk0g|HO zFo6tO?LL7DzpsA8$uB++DX*`^Z-8CAUe%CB)`tIKR`02wT#S+NZ%7#f>o1fngNcP+ zj;{+@koE&6E#TfC?#c8w_hh2~mFH!!#132a(L)QLRr$dH!>fwlNYOVPzNLwh0$7SQ z^1KykNhURqBuf@Zu2XG3x`u7WP3~ysDdgT)Ia|FqBdieiZVZ$2P?&Rn#vJ z8l5rr;K@wFCg97YtKY?_*i7&=i1UZ~0#$`MGaz>n_G<`WYVtuYuiE#w?$UQq`7 z5mz6A@yvtG^rh=yk`6#~D4R6|tPBFtv|e%gCSM{g{5%wt#70_zKGul$`GqC|@fh%) zC$4rM)V*@QjD8428_`@D>`5W@LT_tPk~1*1wI=;WdSxN&2hpP7Ob71xYECyPpGGH@ zrVF-D&E-_NW7qxTm9DYz8)+o|r{dXMBEgy`QLs1l>m78fJ_BJvH-4sU%3~R@NHxMz zUz;i4K)z<(!39)UMgIZwzarNh48M*ecVsQXXL@KL57}G1Q(hPD z@+e_SuKowUV%v;%lJuCkwfs{^3pm^crQ9Kkq%|ZG5wqwHRY23=#iwHwpK4gggIBij z76gZ10PQm{*#Dp&%il~1M%Lf-V~K6EBVm9Beu>l^fX-VHK%Dzph-G9w`d?=$GsWrVed9vJ$3K;>Z=inlj1&WSNgU0YSu-bM+DUJrDfy;iz#J_SxdaH*N) zOiw*F^nX%C0Aj8niM__W5Z7u5CBh5^77}X^(SMW|7!r07Sh*d5piy8*Pj5b8a6gRt z?#2R}eRsY>^u05zWb*0_?9+jUXJqT8zyL@FM-X}M<-Bo92Rj9Crcy@(J5T_#5ap!%bsC0~qvASw&&@az!Dd=CcN;Oz|VUaBBmOea4&39>? zF=NTl@};dzd9@MI5?ok8(jPc3tszoSIX-v-HBgi4-Ul*R!G}mAyn(%AXd)s0iwAB^@v{(AUO~s1P7nSG| z%Xj^e$divCJcO*7M2}*c$dHc!|0GhFFF4?=+iptq9GyBF_s0lVB$FjD;4(hX+sb3N zya|wVx<{^R)HP9>o$Ev;5i;qiN0+!~z`g=_*X>!aDf-}7{Nza>kL)wvdpsATKMV%j z-wXx^^RHte9XX29g%1vVro<27$*j-o#*zA34ZzIM6*%I68Nf%MP~81mEL|rpt>&KI96{Dud`H0miFehYpz306;eI$i4<%x? z!oJd~!`Akqlmui5(0I}+3sN#eMoJSVU91PVYSS}?P(`rpIR=3+IO(RFrLBRCIEX@O zV4;pFn$RX6C=tEFs{$PJwCV1xZ^Cq_iDzjmY=pSNs3fejQB)gW(5KYh^`~3)!rl|K zD-%6AwCrY_9`w!Jkvw@oin@*>xcNw{u*UwnOID!o8}69Ja-u75(iWC1D)$#Tj}~Nb`G@ zF%rH?6U5LWS@e>Kq9y)zQ&;V8W`SK(P@R!SEkmyttZl|Sw`0j{;kK%6MC(M%9?K${SmonH64ob_@#V*w%x5^l zk7+BXZEeC4M72pw!>1=qBgYS~AiH{o(*GA&Ci=etmi;$eX(GFSt~kLnsaOQ)oW`sA zYO=PshH3XFc<++J9DE?$A(46_yIFLLE6gVdm!3otE&&IFZ;TvB1Ayv&CpI%TH6emo zoaS#Hq_SQ<=(nEI^ys~R(2U`4G-IJ>`*ky*iI+^$VgMIBXopPF?>{$1#z!x z5A1O#{@Tp4 ztUey34n2k4_oh~mwJADCAMhLErkJad=~Ub;Y&XVbWg~=C8~{-SGj(7DwQDkmfMYk_ zhST}>cvmhMpsX0SX3#TrDfEOoSd+T z=b5RhlXyEcuBl(E!&1(faogBHoK3`>MFfw^`EnbHSj@u^B#^Yt@Kl_jtTnldR4Ys6 zZOmTB)AQ@|3mk|;591%^&tEZdCdS{UHcQ;-Pu2|b&YDTi=}K|II7nVTF)7u2Uet&o zeAt*Oq@>)xGEBSXxHO7(lit0nm6m8~#;aA_Uf-tL^~#VqgC7k=ZxYBjx-&~WPZEQ; zbd*r+S%{n0myEOMD9}gPS1vD5(9l$o3`XG5Y!v~v+s8<3H>o-alz7z8Zpd<%MRs}> zjoQG{%T5#P)Xpm{C8;%$iWe`$%AAotB0k`ck~I!U)S(o1o>*%#ensKkj5C#S3cWlA zK@ENdawNmFqVK@V;+>Qm`6!q)Y=*>oT`_8RZHJK->l(xlETe~_S}92EXGP7}n;9t- zd8ez8!!?C`AA(J%h!i6|1Pts@KYw2;S!gFFeXq@5Q^e`gg!Sn7RcQKPEF(TbaArE- zfVBf6p*{+*JSPo2EW9MPG6N>PPA4NyYT<(aoM+SLjnDbu4@2=+4h+X{{)=!#3qlt? zIIu%mGa@X#`{M>l1wOhuC?IN^`;|PEt`Ngi%lMjYo5FkD!>fLtJo(6hpVK){db1 z%GJtQOUnZ5(qpjN!AZOhu;;CxjS;x*5TAii!A(?hMZRU$tlq&nTCq?5p@)CvFtD-w zx|#m;OW%JCs`P+yMf;G(sHl(>L0Y;+xwQhc$+-*xi9p5}nrVRQ1N%us)Hy08)EOYg zDfp%_wH#XXQ1;*U4{QqoJ}3cV5dA@&zhm8OjKAu`5+|NS{Jy#0*+E9>g32BYd$*5t zyft=)lu75*bc^|M1i_Ru!)a>Cn zAF}rtYphwc(6HJ%U^k3E+?9KKYj0h-w!i6!tgCNdx$QS5`ZaZCaUw6(Yt<04kgK`t zVMDpPA|#WWxD*=Y89GQPXDlad8#@S%xQZ9Q^_kw@P>u-EgNjL?CLL#Ft<&x8u`Kf! z!0iSSQ^L957K!BHpg@of#sp-u8)I8L0^IXRw&W)YuGJQEb{A_(b0~9TG$;muy9uNP zGuq3V8wTo-7iq{~VU&FL0aVeC_SFR(?^W)vV+&v(z4T%LNO(1WVn5F)`}!IwM5M`D_(DT5$mV;OA*E% z&-y)Utz%p5LH(`egT_7|7{$GMVWcqh+g84FA;PZ-4`m+} zzN3PTQAV#>a2D%pIbjy7;%(6bB6%wHRdR0A;SEhuBwL(Z*O{19vGT4;`VvAxs}TdC zb*-+lv5{7ha4s;#6&8BJDVsXoxHf9lvuL4QwfJ9wpuj5Jx)L+la(q-+g;lo6#4sQb zvn#6E*aI#E0Gl~i-}}j1%i1*k{{YutxeJU;zilksa-&xL^w4c4@6+7NYBD~r`0GnG z3C=ZuozN&UN!dUbpJfWsml*B)TFEK*EkWjcW3g2=-*2ToUc#(j5r~wI5+U!5R)HhJ zwwACIm-BeOmfZ1oF5Th9H&eI+IRWEebH;ahXYr`3xV z@3#+FNUBkPKo~{0#`i-w&HKz%D;3im@n9=?lXS#GHj}))i&hTiN5t@i#|c0B#@_CcB6!z=6qRZAfVn9IMiq_yw3szOVmj$USU)0wx655)`xy(% zlS#}HX+^CHp&aB01nZ>j=(TM@T#a;C$!3ukQzPa}@??N4dVYA2j@){XybXDjt!9@4 zm^fC4+upR7QN=(k>=>vx-%y2u@D-$1?Sy3C4unKsY?oJ%K%tmT>|WYF%0)!$-=kJ} zf?Snx#`PF&pm9>bxwkPKsi@Dj*S${o2lC)2ky1qp@|?_x{6OaJR-XWdxS-8dD1M!! z2Ivz;Ie>N)!frc-A2EdK{j{E6o_*JMEd`cO{_u61M{>3{%^Fl9Mgn`Vrw*?cnLgVs zIKF`1FdlU`Ie5i8Xg(T6V~vD+{s8Cx>EQ{FfAliz|ISC|zjBa%H&p*IoQ(9K`XEG5 zf*?##NP+L+UHI9#9x;MsC}J@Ez0d0ShuE|!J=o2h;83QZLO?M9^6&9u*hImat~j#~ zfhA}ff6(RcT%zBM=Ktyf_EQ(dcU_?V(FKV-ZWJVO1b~Sz?%iA)anLJsXqkOD{tUDF zhv)tkm1bn-_|;kqD{$DqQ|aRuNFLv0*bcH(rS!KZ0P>Tf^ADut@Oj)y!u>_f5>+G| z!JeyvVIyZq4dOb|g!}0*@g)QdNF|6CLyJgQC_Jv=0)r(YslsiWhBi9cpv_0LznWICT_t?lvhT($;tF3`6~GOnlUM*})ZzTwaM(D+N6}{WUV)`VP#Mo7YEY#klkj z==~M@W%xZ-D;!gcAV>f$=utEUzEroxBx_&leQQG`Xivd+MjZjY%*DyLh0_hifGBGb zSoRgm0c8zq=|t3#UfLoIj2$UjBy*S0lSatpes@9C!JFy@u==yK88rtgp<>`sy7OG4 zqSCZUYh~_N4=$fFOL-Mkrz<{JCv?J!x|iz~74FGJ`Ejf@A!(#TkDhaa;@j^BlI;8P zog*B)4o!<-qJvyef9U03QE0~B17j>PlGg8WRNy;@cT)#_?~oN*H~P|)`;FU-c&fRr z^#oloNG(L>V(Hzv62)6E6MZ$GiREJ(u|uaX0OtHb-0R(!`!O zE?=v(EuXO_F0KCO=% zRNF8D0`oXg+rGB8sD|aP$ZfG++l)n~j(r&>NSwMSYN!c4lw^gh30oo16v5c5Jl!^8 zEw|IJeNxkzUAe?ZWu}c$N|%hd**v7O4L1EZ7R@IQfNZcN7=O_F@5uS@db22S*}o6v z@f|XD_p>GYq_IN#T4!WHygt}6I&t5=Mx9|>iTHio62+%Sc=M8H=%XaLWUoF+5`~Sy z{5~yD92E`J-X~Ks-vIr8LHNY6-^egSO@IX!zThxfyN|5S0n zXZo3Nva)u-XJn?6vo|s{GjO!Ahh(7V;rY{fKrtgT6Vvx6Fw_6f(Lh!Xb~;5TeMdK2 zBRX*_Jrg53rJqSPS$%UO14lYlGsBVAPBOY9cj@8#e)xA{9qea!2X@KwnnN&t z03dM|Z)8ZhyL)h>y?3b_*%jEFmk6KUxHHV{Hx-3C5pJ9F`7)(npC5>tudJa@r%`Cs z_t>ebxpK{vn4}(|Vg}Lln*M$bho&Cw#6G&>#HKE_-&DgQF$v)qEt&O2s?Z2DABO}h zBFVdGhB16P3UwuXp?e^t(=@cQK{SF>qmbk_&&h~sb6QtcWR?ea(R%<}`q^2@4B^VK zygDE2Ht$9_9O1aSeoUvn%5vZ($EjDR{x*amS;Z5_jaNunqiAwUYWj6sV1JmER}j}| zHGE+fd?(5{)3UbVno0jLwDf5>lzHgy53cdEV zipZEw;}N6QyMg6oG3}aZbH^*lvwk7XvS`>CG~aF0Y<4o_CcM(gm}$L!OrN>3VFUlY z@`ZG|_kgFd%PgVCG$qZfA(O}S%zM4^NutX4=kL!r&;4^jk=dAT#puaqK_jAQ{?mKr z9~}FqSBTzG5q=7X3cdU8K}A#hQ>D508~rCyUntF+A64|TGq)k~qUH5{KRf@BmA`pF zCvsd29iY+KT(2$qUMeyAuAF4Lw}`gJiGR}4zqc>6s!JtJSC1%aP%(Sg)$Y9uC6eV{ zXK0$`^$}`5g+{k|${HdSpDZg6EJZ3hXBa)EPj82weTXz(woSD~->WPld_kjmiBRjj zFOlX|G)o;eRk1iU8OzRXKdYB!CE{7C8~7o7JoXJ}so; z$A1Vv!4+^q+5ce~{$k_=1Z-S2Y1n8P-W_p9W+qnrU(>%7|NlwtKdrETPuxN>FtPsc zvJ$bexB6{W{mPK7Vi;h7-r0|bPB+*BW6)AE>z>z68o9#j=00XMcIrS6^%!6gUa9-Y zOAeX^kH&Y^ifhz)D{=SQUJmxl2CulhoE zDkhFW$;78i=tCJb4}G{tM0T(EJj(`7boTLBsk>4B@}f{0_}8A&vh+^E))ZL|y(1&F|3s5>oju zG`~aht9$WZUh~gaPyaFAtiQx#{yS@apEdtw!~ZWf%=%w8{QrdJ7dHG`=-_{%3jer2 zKmUGS#b==VXVv{ALmUk3v@GxIk(GmmmWiH4n@(EK(ca8e^Cugi$7g_i|JSBdFmkYQ zvNtgL8S@Z!bre-}eE+%;pW)|273f54-oqsfKRKrYot&QI``3@w_$)u0zh~`j3>1wV zHR;~Jm!wlNa&`PSx*_nd5d2q&Ytt#3>KU3@n?SPsG_(r;6ZgPp`Dt7f-h(Kj_BKwo zKjSTmzl35G>6GmCtQ~Ci?2W7q-2V0L{;BxqsLOwRLN<1eU!%M$^O>Vj)J?HLcQ?o_ z8R{8Imol_QrqpBBhEORDm9fz@-^F4KBN%LWeUzL~=rH(I8h}HP@xLjt`6uhfK<_Um zcCK`^m7MH2TW)T>`B<4hA-?&1#lF8jj8j_6bh*E~i}rcib#`EX-X(v1xf|WHNzQJp zIUX;nS?$Hz6Ogi2+*+!Pq#zEaJfA)hrRUM8)P1;WTJ^Ev%^5yBf9sr@N=}~axWDyz zyBKfsdAx*MW$V$fuOdL!cdT8f#$8R3Jh}SuYY5N#iOX;YaV%^|RTr{o7S2vfh9~=x z%LX&UcVXqdXB4E>@;b}h*eeu^OfkVR*SI$bYx{sBu6PlIXgD5>B2*0=32YN73GRD| z5^X_HS}V`F&Ny&;%9HrG9(<}(76&({mYic=AGBsw;mjfyLFbU<3@#;HU_93voFMlY z#4#(I=V-ELqHx_aSxvUIkNtg^zJV=f8chpju~#Jannq$~zask}v&bDS<-^=gsV)YEz?E4LxJ#G=;GNT9eJcaP6{0TnhPt%;(tGR_N>}}D4Ba!t zl>ceH&|m+>ijv*Ou~>jPR&$H<`A~ldC%An8SqkC#0vEpmZaP5GLxRAZIk)Fj@p3R7 z;$4>86O+W(o6ty;Bcz~&3j5utW&@C?-VLc{FR0!D^qO+bANd*v z9W_tsI&N0<#?K#cgg*#d%-LmsbdIwoa5b&apYx~ZLoR6I&R##HH9FG1OfdM1e>6LW?Q8xAa}SHp;Xzpdi;i?6-mRVuUJdQM zRz0bx`K(dcjvUTDIqKQabqMI91puaK4mVeW8M-K_>85rMv&phaLhD0#6q-t_M6rxP z1CL@w^@CwA`?I&pJ~*prym{FW!hQn_0c8RYXFJpQt<(u^N_*BgUPT?EY%riZUd)eO z9d%w^Rnh*!%isJ$rP(T>M#u}4*)eML48jNn&`^j_VSk8Iu5*nfeN`gaY<*P9jGpkW z@r6z5O|`ub*`WMky|H8(Tdk5=NlHa-qTH2pzGWT>VzaJk@(`C?MvU}9|Gj~}o~bJ< z?tS3~kE=i51w(+T)$H;LfOCew-w3>2luE0th*5NH| zc3B}>w^E5LGJ&cu=;<4W8A>`>n40u$zI4=ew!GSNp65??_{Rb|1*W*LYiL@`2o!}T z`v4ryN=t}v1#Gy(&)&MiTlIYtOVBV}C$WSwQ1zCH0y3XjgxZpO#J8P>1Pvs0%HnJU zJ<2BZZ?;*TO|6(0o^JsTAW%USc!2Y>tjp~j-NctVt?Y5Rr1PXsYScOhoc%<29Qxh? z*=?IhgAE1#&pA_ zM)dYKLbuy5(S<)}azkEq>@y!M3%kWEgiLSiuk7!CSm4!GMD)&$c}pM91Jy!{-4#J0 zyF3J2)2Tg=byon5+5uc908NP`q_5}CTall%hDKjncZw5Oc?G4 zz8*d5;cU<|cp+>wR!a03|8qCHmRf#q`-V0eFs*KL14r?TRBa>1fKTnfCfVCS0rn`x03;q zwf%k%IW#!S_Yvu8DK-@7S}!NDF+qgY&!3Gl08jVNEi3Z5h))350ZoIVkE2QzrtWhR z23)I=98N0aE)^2LI^Pa+mOJA4`gw}sEXF@|=@=3YBo?ihfUj*k=%!LfklnubNAzWuPycXRMu9w z4-_IgNg9?K$zPp`Y=$fq|70CVfn!HD zC*tgb20w0Cm^JYoK@HsA~7@dN4`P5Go;&jzNBu)Cxvc=H$ik z8<_%=KOmmONtZBO+yRZoAf7`>!II#l^gmAHcL1>k6U+||to86t6K>ChU7bnfnFkQ3 zq8D&LUfHD}iEoK6XL}46FvY9Y4%N;i5~5s>$ra@x)089ugpqXG9!}Jx)&oPMvYjc8 zKk}nlO3jZJ24OdIIohyW$iM>DG$<=)t|B1X?kIWlFqGCP9VSZejt%pp$hKX?G7?$> zH8m~j1$#|yLqtS2U6}aw-sj{o2$)MQ!pO{taiD`Ih|wA>Sr<%_@Ws{dk(ueAB5?A1 zSjGcf1zbFlyNLv0l6DO}1s1&~W-ck1Qiy z?d0d#^fYWnCUKEJ!ys03C>)DY24Uf&a)Uw5W7f!30z=J9)SOSN2Q&AOhypbMpc!x` z9Qt>|7DkCh8*Flp{O=85k``o6BET2q`^Ru{_a6R zfAI)Bcn`aVZ5%sF;vtY97pfR`D^mO%S{zDhi&qyV1Y7|i@l5{|PnYUggt#0iaR>zTyTowXE?L(%@x*RJUVmCwemIZm;s^ZGdYqKjn%%LI zNOlb5S<-7l2&p}lWi~~~FcpDTZ~1`PSGs9Pul}JOi4s|*1Q%o85D=u5y4XkEPU{PJ zyp1`!46s+w@s%?Pdk?IYu7T)^*{uL}FHMD-bKi43oM#%0-GgJ)xMq>AS~AL!vmj~;vObWQ?Eo){kOsxM*X{x@Xwl&OvyTNcMb zP@gn?yu?W}a}4vV(H_1&>G^t7?AZ#k%ggZ4K9XuZt=qQvPjBKMrxArtgrnDM{fJ^o+4v8XV?;+sl%X}Cng?G{teWUo?YT1w*ULSQSqVscb!iy zi(UNFeKVw=_hl{R>ghp;V{(h#Y2toEl7{BstypG=5Ss4l?zgPVKm55P)bF{6{!GG1lT1~( z-uF7xO|#5UpV>%&GIKNeeOdrQqlR*AAv=e>P#n;>Gli_8?~4;*QYHlLSi|`uwjv=S zOV@nGZs(oKNXaoJ^pLC*dwdjGa`ZMUGo49wbxv6K7DokV(Q*PGXk_=jlk`y$df(Kl zMv;4Vkqws)&}=WOggi@+4Fbes3ibTHQnfKqt52za&hO3Ep&SloYZWeTYTwEW>ZsAg zY_G%s>Q3FAq?1deChUe^x<^9VF$o7mE5b1pY682+T;_D>#V!UqBHuhKmLN(;yUlqP_t(H0Ni_ zpG^Y5(*obcQF=!J~d~#XLvN zF9;(jc-Y+`%IV~FSv0{sXN)OPCW;C5EiEe`B?kRtp*t~zkOn8*Ttk)wK4Lk{Ljmuw zpvoQ|WLOHsb9h#~^QcKbL%FG}aP^5e?&Y*S36|-1;Wn9gNEMn5HD>KFK}`3#FkAPJ z>&ByKd1j!Qy@320t4uMX=kPW{a%XDJv?&reGgH0XE-{xX#h$rArZG#U@KIbTTQGI@ znYjmT3)7qJEZdR7vxS_*?G;R>(a?n!=TpbC*Xzi^o2Awd)WgQG!jsJ}nHv}W$1-0` z31ziVRfN($=h$C2w<`trox4QeD*eDjo(bC3z&q>@(1w~;RDe=nmh*6(GHAcmj4?^a z(W#d7d=Rjd5p@?d8hUiB;B8eTNE@oO#i1nuwcG6h8L)6s2&VQ_D-}G-aq0QI(4Ze3 zh~!~Mg>JaTsYO&vFl%NT7fcP#Z6-0b3 zm4{f#XUHI1$XC#fx^vjhR>@;nyO=oQdA*`&bAzB=zM*DG(>{y@tz*rP%gj}pXiv27 zUxZ-iis(TNSUeLv7i!Bm5kOCWSpPm%BjGz5U*i&`c2$->ANO+}KPj9|PhBZG9^$H4 zvR^|lHG0S^PzrUBsZw5jAAPdFsvI7tt3KFoU^JY_FKKF0nwfBT!0{jRFsbZ(5mo11 zXTnvbawkUy58cc@yC9)c9@aF;F24eaF;fLhbuQ}c$MKWmnw0heXSBNUv34@cX864>RtV14t9KI>OXn89c( zZ{pgg`cZMpXI|n&j~hCTgaM##$FLY6!_=7@gkzAz3v^WUJ8E4ea_ULu-0xEvjU=&1 zkOsnQN=o#pa1ssY#iAfk3t?&Qlcyp>M$kAROV@Gggy-GECd?$zxFOTjvFeUi6UPgj zSN5|%lmBBIjTuKdRK8ci>skU7n8wW`YXVaI!_|H!At};^;wRx8rWiH~rW!1|LC;cO zzlyyZLeFd}>E0yMi;0Q?3Qg=`t}l4Qe&V^Yi~5*6LsTSPs2~?yS|l>d0^-xelE94t zQQ378nRQ!n&sl2X0F6Q+>+Y>c6zX3$L~OpVL95oq(y;CBlpq#c9u}C+m<3i=Vo`fq zy$DmMIts+Wv|E3>daW)X)%-RTEW8^5>|sN@*3GZeHoBYoW@Drn6y zzs0`$-rV|d;aie5fi=f022Wm*HG(iZzM(k&XvRxy74Wtt2cNr%}-E z6paupSt~W{a4uFjYuNXx@a@P>TpZNaFqDPS?NAmDMCVVV zQTGc}TLY-r?}MhI9?l{ZKfza5q#t+y;oqyEYPZUOk*BFujaY;mkK7Yf(_P48_Hh zNOU$Bg&~QTq4Km^cYP-%)%3#!NQsu$P6pX`K81Zt0(?C5kEE7htpG$NY#s4fGBL#q zN0Hd9*H>B}29~C(uZ2ZLC6{dTN-*?$Qx&Qa zSTnw-(f0*;R~(S*_u?OMzPekgiP0|DP>i>Rv9KY-;Kl{hu)eP(ST)Jj<^?L>&e?S7 zmIW&5!Pz!xkZ@`fXZMy;-D!*gLAzS-PBWE{mZ`ah7gKbWp}B@JdwVj~>_(c^LO8N? z9Eno6EAGXM84{>)?e$6ZHG)4TIc%oWyDI|JQ?E72_<_PGJatfiP*YOsjjLjc~La9yV}c+vh^o^)0e!sXD>6v(NrN% zz1GmPI2MJ{)bw$JAk9>{Upf}yIeV2Ts0H!y)Vh{lf_2;xhIjU)qk4WpIuu!o^$*m` z>$Jq~>7k#VjUk|hzWOMD)!Rcqd%PJ`LqF#5hSk#(+M^2%MYaMn@LnKD@m^eUjnhj% z-INeCWLtE@A{3;DW5}-92kUE;a!@Tg&}Cor#TlHsm$1t|4;&q6G<0DBT}{Rj6WZ=j zD!3awSq8aQwreGnwUVF$MzVXQ2C)K$s(a=9T|jlOq{e+gcu#l@GDYl>3aepREQ>$B zshUYs9-Z9e8dS1`LUCz}x6fC)8ya2687evUt@1r+S9>nd^&WP9>Xh7;HIElwO@zN{17xGWFn$kKyUQbw5ssVe^%Au+DN5JSJy@Gm+9gDYOraX<1T3F)>|^9SP(_rk_lo(> zR8JDn$dWOXis`hr1ac?7ks??v)bD6bIej%GVC}xHPat-5zUx!#5tm`~sFaTv@~LX7 z7r|m|t3=B5yr{4hB^p$l_o})tsYHGjqh10d)~%#9tR+blh#SgswqMOGgaTDxgd>}Z z3KjBmLX4v}E=G>)qg=<~o@1V9k^Hxz-vKjhJ@gc!#=ziUo}85c&a%U?A<2 z#NL+zeIR-epk?`Yh9^_&n-b^CzPR@7k$Zat&E6S?PA_vh8>Cyn((lBwP=CpmVZkdB z-AI^8{myA8k&S%!T;r%$)V}a>@iU3{ahW5zW)Vf2Aw$=@#z@MCa*b;7nn1+SEXRI6#-xjzKxkt|Wx( z2$C$(9buLh+Aau6WIFn|!k^APW^OCRSLx2gRxL`!VO@(baEl}5P0|iC!-?inRopc# zHIA%m%?RdFN!_zpfh)}jwc7|xGl#wiPNf<5_!3QV#u^OfuvA`8EY-uBW*!Qm`z@qC zbG}#1D=v7ig9=b-R>-zc6!#%Q-o*Vdv(`lx`*OSMb$lUjcA#%!_fuKR1`?RBh<~< z7ZIA+T;Q=JxUH}oaRkpoy9t2_H9rgqU~D#=#1w|Aep|a2@xD*nz%YA$ugE`jUX?ua=41sh9-e8bqA8_erIR-IuD)(m-i@&XVn zH4+TN+~%Ow^WJ0G7Q>m;&R|5t;qQ=#1DH&Z{a-*01Tg|H>yqy;)xB!Haqd@fcAs2if@`Njm%N{U068I%=v$*v} z%K4GmMN*RZ3aq6(R`0y`EGok#mv$kX>!UqUQ{{D$9HVP{=)_dZVP!or7U&SDT%qc+ zoJcpHwQpq^8nLDFdOtDxkls*`CfkBrwrW~D46`9nu0>bl1`IrZ{w2zY+WtoM{;_6! z^(UQ$n=)bwj;|$Am#B>Uo=unKpF7r8H{TGhQ?8}=RvC`chg$>}lDXP?R&^X~RPQzR zq&jf6J5uwU$DVN8wE^#Iv6jwm8P^dm(#>KcV>a`vJL!I4%yguxETZ3CTs(4lotX?h zk%sy*oTpQO5A@lT(Kv%+AA5RePeefK(}Q&9otUFwr$(CZQHif zv2ELS^2D}nXL>%(d)J*iYrfSVs5<-9mJzAxZlTff>*+O&Avn<~`_h)7H130LE3j+U zc)QWHx*dVgE&FIa6LFl#Igt%`+S%aj81_VvltK zQSYD%V-U@?L2L3g2ox9{+dMW0Q+o=b$>8sQw_TYId!HP`S#!7IJQPAr#f{+Z-^=Y? z=R%b2=25J@1|-Z1*8ygIvGt0OOq)g!8&gLTg|iejra%*dvm|WSi$x^XjOLg%)^2oI zM(WwYEgHL2;SKygjdCJ%%C>~Y80>4A10E&E-&^j@_3un@T1x5(!71v8Y~v=E*X!Ad zJ;>G!<(+AcmE&(``RDKf#9Iluo8LS9n{@qb79a-W_h$!D?ZfL>(MpP{q7hR3|J>bOHA(bJwarlZ%q}YzH zjrINO=q7CvkM>dfym5BER1b^z1+Za1R@h3g#pU7C_m2X&8twgj_;;xDxx0ez{XEG1 zadUf`jzHwC>g0$b`-wJx_v7x^r2OwnV%GoAg#OPF#S9#5|2zx-C!#nTbJBK`^>({< z4&Ge|jv^8m1TT^m)DwDFYd*-t!wV|%^QV~jq@O^fI(uMEKMiZD~K>NS>rB6hZ-$&<8Rhb|n1V+;ZbCd$Vpb2>$Ro!Z@k2uDOT?<@!RS zV&XXcXf6PMG$w1Vg@gt)Tx7FMLs@qs9k?M*h z>KdwV>}rjKM-}W8JqReYa+r(=9kNEOoNOF9bYG;6OvVGDOWt+q9C{)`gg%x&mh z%=}ehud$lgI)Us?21C+giA6E)+&!k3oN#+LsBcK_Ry#boB}Z(i6@_y|Uj*FoT=mV= zY<9%G5{#tzEV(oA*bN2-J<75ITDjlfNH|e0%uZrz99qDqo7@GYmDw<;P)(9wevh;; zuq+~&Ei2WW7Tlh55e{BlsIQE4B(7f~Rjg9Po&zQvPt|5lW*K0Mf+v2b5zbz9K<{XJ z(lHcAmW9J%jrHTisXm7%KYbd-Bi!wzL6&WGu9oTGQeWV0`DOFu>v@0NLQDA8eN5S+ zbSAr!Ret4q4Z$v*xu}lcZS3AA*Tbx@Gz@ELfo^m4id_UxNv?t^YT=xwd<u*v4%_XR7rv2jCGAJbIwafetplecCJ%*R=HPHJHMuT>{fqX0(NsN?VX4 z$@{#B~d( zGywS>l}}7+@~WyM0$Qn>I-Y$mUe3pc~Mwc8C( zw43bfH{$hW?K|K#7`rXidTsfWKk{7}3uX7T#k`kD@XM!zIon<}>1A5kxoI-uVoB0w z6d{NiRjji{!1nuOOuNgFR)D)OuIJ-m4@1MN0=OkZfMiOgo_c}!&#&hhLxM>b&KnHUI=2sG$P3Z zvbk$*m?eC!E(~v~&cR1sg87Ou4qMc@$^82ll2a@;e29%mwEJ4jy%!}v#?eU^ha++Y8qp=Am`tHwodX$7)Gpkiw=+evz`eOjMO9@Q zVI50Q%_l+a7EV?NKBY9dsGN6=GE+&u8v>Jg8Rz$ju+pv#e7HPT{kT*pcePgNr=BK^ ztaU;$LN@9`Fc8BedJ#NNash)6bgZjzsWWP|y_Lk}P=~r>(LhJ?9&rylG@62i?F7l3 zXwSfS75Q9rBJjh@W~xUkxs)I#0MkNW8ZWKk;BQ1WbQb}h4_|?5R9lsnS_#=&w7Zo; z*+=TpGS@RKB<-UnNmm8UfRjK)XXE}>$+OKR*XoCXOScO1^Ax-GNyDcNm0-K5`{Dar zWtdTq;u`hy(;W$8VZxMyCnQvp=Za_u*Vi(avU9VsVhG-phr0!vh;Bw!>I#2WI(#2x+LJgZy>&8^E(Myr)@RNX zD7(R)b-&{!iI7BrW&<}EKh(6LSFev?oG9I0zmFrn8T0eK|33HG{zHWPKhJ$e4yOMy z_lvP7V-MQya%ykko5JW4Q1l-O_(}O~e;uP8&ixtnnjrY`i%=i-j3+c{N9PjVK+>RI z{%B77(YYM9{#lc9+~9M1``Wo$*=e1{OY8ma_b-|9oz}P1~uhc5tEjp;e=N82}P8Hkix7Zwg4A3;*LT?$2mJZMbE8`6m}L^QB5Kv@J) z?ILF&0zLdDnS#o$Pm8y#yAnb?`8EsRm6C*wY6@(v@AM|}`1pj=C)U^_PXmZG=4&)k zs80zEq2vb>^^~P+8s5P0y#S z*onH>iPW40gRy(Y|C<>K!Vh`JGG&q@ScZY}uAa^OyxQWaayOF`wt@}Xu!Z?#j+qJc zMsP*;buEJ8W6BZLDdi$(Pgqxb?>Z3c%4}nmL3Ee(9aC+AnTFGYj??+Du_Gr;9!lDc z#qC;vYTP-HQTdx04mws;rTl}7?FiH4DsfXOd$r;+yrYq(i?4dU3D0r*tncC2 z7bdt0Us84at@XT(v*v|hoit92%__vgDGqyxuWHsJC_;*60Avv0-P%7w4{9b4#EUNTh@&$4rO&XicE-#>dntj9@ z6>i7V;or-T&&rL08=%@U!Nhck4QlxoM4xWHT(`{-)%0j9(Sg|BLWJ|+5vQg(fz6~bL9DC@+tg;(^x;S#EvT{@Bn1d57$3wKNZK>u+|{;O(A>Xj{0LU= zB91xt*TAHaMp)KRw@)eh+x*Uz#B_%g$fMG`ZbbIyqUbryI6-U!24LzCE~(e!JCm?r zD6?gayH-rUXd&@4QMjwNGu}qMnvE0d^_^}J#;L6CZBFWZKbz1|gwz@UG4$Iyjg!R5 znJCp%7|$oXKn6kSXwv@pk$`zUuS6A(Th~PBm98-f6B7q|XTu1&ur&lr%Wv(p%(Cd# zMs6}CME}b&RX==>KZj?ad`{C8&az!2Vc-ep)KQfQwSy2;9jx?)r%*(D958OIy_E(x zGmB^bnZYqk&*J9$2D)#N>ac-u`IMZZ^tZ7&il!0r@Ap&0aM93~s;2?tjbH9K|jQb-)-0AE@W46A`+Y2V>? z??yS{#H9P|XpXXhu4BKXT4H?+uz4JG-V5^V_f3d1UUdqBr0@`f+p|TScb_lt-{HQv zJqd3zIWZ~57k(+Wm=jq*l9c2_LdQq|ZezDe$!KW0G%YFN9+YX$HUm$0lnZ0EK}(_) zTy)73p)1BqMAQ|>KBw(lml>}2i6msy@10>CwQCgmx1ztPUA58jh^4TV89noFD&KVE z20xTc1khq!j(OuM1Bn}KZlqp-TyPq1Ed3gr5LX%=7f>QF&Pk5$eawYk+1rS5avmJdtzGuzNfpT@egOvDo}Lwmlh(S zf#_`g@pLTlUj>mcT@vB&p9hp0E-WehhM+)AB*#d*PY+&nAE{hLmD}?lXljQlhj$W_ z+$oH--hjOTtp5|}L6OSg{33nzNN=i@{B@g_9H9bY8C!vT5ui|Wl0!e?{5$)ih78IH z)e3htZ>UvPrvj8Sk3{b1#!0}hEFyV%$}bpZ-mH3FF}NNZudVfr5&~>-qLjg%H``4W zg>(e_SMy{1Jr$t<8kiYD5nDcza)Rfo!?u|PbwxVt$I=TcRPeg))dTiu|k=}g4K);zyH%Rvlin=m ztF)>{X!iPm#U4bBv>jWY6EEOu?5*owWoe?FYHFFx_GI@Qw%lyU4lf7@)K(m=C1ffl z-Gd}>Gtt&MU@RZmr6L+iZly8s>b~-^je?`)4LJKT5!%)!%j`(>uhRVatkx3-vh|il z&4Foark4%jd>NEG{T(A+AWGL2d9DD%K)pw;P3lwAEFoB;qeZe^%f#G7s#7tSdW(2QHO_mKj?zf;)1c^sH_q$>ot1c=OPBYczXDk)IfMwG;~sruN~vT;FMGAO5yiN*WPWvWi|uP6F^EoVhx2cIB3j(^iUD_RtX-7mV-=%mCHqr zIFy&VRB%@|LxG$d^X~)6OaCY8Q{9VumDmX7DP2PEK!jeF>%wDV)!sOfQiiPv zS)l~ZtuAnhq@6BN8vqs}Y{dc%_>R&^W!Bwh0KY}1rs~0*p4%8Ud9?<~*3*(HvgVQ> zW{u5JX9yE;l_N<{#*=#&JDTVQKT5;grK%9#RvHrkh+U+(hSS12d1Q+;=HD;qlgP;M znrt#S*jBbiY-V9hb&~%0aAPii7WdrQhCo?eY+6hew`p%!TWv1Es>6_%SmDls4RRaC z90#4f)_T25tI?;luCDV!nYlI=_z%P>qq+Ef5Zh6QxiK((Z7SaAx!CPBR~X((ejWCB zMm1J=b;?8hwCbh#eINY@yT@z&UvT?>c%A-d+|I=CU()y1o3*B6iP~X%PAEQsw}=!d zzko#XfQ^9<(emsB;I8i6uAi^wBC#V68!bT5ai{(<-4 zCqJjRr`)HFot0ibTEDNZ{|(+3yx{uvc=6JJZWyT3*urlp=+b6CdTU17KJRX3{j{^Z z*r2NpZp(j6rVRPEv%;P-yM6dIe_&sp=xUAr99_My(T99!j`}mq;}>i3eRyTRjmo)= zSHd7f!q^R+!lu4hkOh$yIgB3qD%K*%wo z>u@0zddCJ(G~=t(86xEDG>|61&piG*lG#%;*D>Rl*2vwCM^~zz{GF9l?!E6ry6sk6 zg+1Bl)!VvU5XGpJ|68mx{c(fQ%|p}GeknuM(S1C9C4z=WZ;dOhHpb*{KGscj7M+tx zAwd#3avjcK2|(C-kUf2tzblCs=nBaqfdJsSzQylnct=RQL91j=bAThJ8tP;|4FEoJ zChxRc&(vhPDVcQ5YUJ&ATEt6i=v<;rS`Z3Na+Q6!UiHWfllzu#IHxUaSe{{y^{8sx zZf#_31P(hX7@tVhE~_-I@>a* z;W29YcM$82*mzAP80w_o9u(@j`%fvf?{EeQrj(5-XEWAifU8BZDiQ(t$D#unb@h?O zVd;R8PW1(FDuvD>MFH(EykTp`O-(<)nE#>mPnG4uR+ZcXH-QaNtC*m`zGdAC5JW*+ z%!3WcVIP$v#O*5i5YPav}#I>tpi^_@9gs*NL zA!?fkverX|GPyXja?_&W;c-K)xdZIIFmXz=isFKg+)^K69UTHS;g<~gezn1-7os`T zZ1Pijxz0K72<&zdGl017^g!3tPW(j=$3VViYk^QW9cAOZ2^ z_~acF;xwz=Gd2X9S3~+dni-MtSe_zu+(0Rx5S-gE(CG}8J7et0W}nSE6$@kvoitK< zSYF`J*mnJXmsL#xsC#*zRNN6Y`)r(>Q!b@4b(+=#!GnbWZgQTDe2PG`ijQFodDics z6bBx}_L{OHdKX2x0XS0JhL+hn6b=gvKieqYekDJzt9}JGd*EN>%=hwO{8@q&jEEsV z$F%Ra1h|;K))aGFwgTf#33y@GxNp<(xVxPDi!i0U^+lFWhHkFCafOxCbneG>8-3|d zm^2cP-TJQAU=pyo{vk4+*W2+kRE|8c@MBoKp;cqg?>>A6%YJ&>J{dVeR z!P_sG%t~C3sU;t@G*15#B0m2?U4caQg4L{a;eADM)zz3Jp5>!(>WseXFFhJPlsd~c7*;h;%n{Wbs zEedDtguWvIJqdL3CTgxS8U1)&PM?hmJD6w?+~cK4Udz-=gbwX_i(EH=Z@5M7pIdQI zsHrH-YZdPT=sF%z3rhh^VnV1{#D0P;n7?}%6qBl)5rcq4(zr7>2givbi=acH_YRju zCAYlnl2(mcxnhiFW_Z)+!ls#m5ZWmXR1tF=bWFqq@+qU|m(`7;rbyjJ6`1aSQrZv+ z)dKoUuqs6fo9QMSohw)?ZN;4m#ozK$AXDQFV@+XsagZ4YGm(hxxdZu-tl@ZO{@G>u z4Pj(oFv7L6!_BIx%Z#?p`H7geG13EiY7nw{hDg7eT5fqAjFvS$xXL9~lqpW&QW5d{ z3MjV>PXxVOf5CNeCR$fICK@O#DP&-xcuxD+Ef(c7V z_&{W+#-K13|G76Pl=D!xEA4CVa=?}^eR$eNp0{;p2Ss ze0$IrOV*JALVS`n$U^g5w8+($&$h8kEhR(>)T!qfMI*IQ3GD*ELlC}bu10x6ceAOcQ}qr zw$bAHh{N|rFJ<~k9kqFTlR`PesI4!Uez9jUb(b*`4x&S9 zV9RhHOmi2rs*lwK-uDA6aeIu?TF>WT+--r=DSZwxG<{tqp3>l!vo7|TrTqu+%olqQY%iaxUh*zQQ$tz{w|DV zHZr|w6I2sl&*=OI)dz@l;VE}d)N045(vqF4K{XsN0w4)nVf9aXi5`QMo%c-w`U*{3 z%IdGbZNC^DYNabV?AD^T)T^ru2pAvJvdppEUI!LF-R+O&xk8T`9)i~jB|LZ$cKbIqhmvx$o-^mV z@j~FQp2U6V_)xDP9Yu#q-mV+XGg@tF5X5L+O0@LDn4x6{rll#TWFr1NQ6cS}xu6Jm z)2q`FayFc?Y48qcrILr&@bn1=31#f4y%R}^POYWteUTjXZBuc?fg8HhB7vx zD%Q3RLt!I4ou^5{vjC<^fEVe}vD*P11ve#~w(I*?rsE-pl`E{Vw(d6R!=S@BJ-n1g;=3|J znWQ@3SPdvjvK34w>ATpmB(Ke@`h3dl zpLKoMgAg_ML=!fS-Xwu5RMrtMRXEZ#hiX-Oi zrqQrMu~9KOHypfszu~(*?<0P~OF*Qc2sQYLMuT^8ckQ zhW$Shmi}Lh3*&!gBd=F$O~zidA#R;eeg3}6e@zA|ME_+9Hb%>T6G*+jveGy~_|pqH z?wLqv;&;EK99;Qwc5e!B*%~-HxU0=%a9|nP_`FH|ncm6v@pIZvVUzmij)wfhJD=S8ruUhA z^DI$#C5KUcY!+#duScsS^*6G+Re554yldl0)XC=i7&-brWFObO{p6#U@7qD6ihGFPffy=&ds-QMG-I%u*-E@PRD( zNbo!Mo}wW-HI+)~VvkKqlPt5UA&yW_o}(#=i?=ZbrEq!Co8Pv1>(?GKbeOWn0ulpz z1`FIzE{yl}~F4k1KCPdh*Z5MJ(|fvlCy`^L$TX|;6Opn-&XY2Nt7b&!M& z5Y^+PuL7vJd4R5;G1Fcpx7(EQ7V(C#QDju_j&)Zysnu>Hdw3FxbMjE}0{n{D@mF80 z`j>*fv)`bdW=6~yqT;~&CKO8(@%YufGhlUc*w3+6PbG^65`+dzsY&>}-*gQiU^n46 zj*;3r)_E)>-}DEgBp11Vw-!O)8G$MKTZO|mN7a9mqOGqoLyhLh#iC2`P_6-L!UUZO ztW+L=CWJtxUV6}XLX9N*=#5cqBjc|ObjO3mxF&uy!tfInb)ROvcWlK}{WlfPEeo1TKP3RP+8!$+v zWx{PFJX4Q&L}8)NwvV$f(HW3H)ER*4ep&d?b+tj;RVO0cEompgf1rjOte`m1<9k4_ zR{D%~&4$!vMNIx{Ta+oq{4AJf;NZ7P&xy1Gc zpH3Pb#xN_NKt2DLLv-WZQ*`rh$RH&~&&d7+;>r4=4Q6PZ_40_FXuIuT-lvKtUk;NW zS}Ai7 z74%A|Z_!iEst8=O9v@t|rgu)9kz5!0fZMPmV6J9R|FI9(V@sm;nb)`P78~sIp2oyx zLBb$bvLUn(Q)9zr-7C_ezC|HZ*M3g3ze~X6Nl!jRRsP9SG=m-S1vj(@L5m+rOSLnz z=ivLC^1Us`)Ngbd-12pT0R>tZ0h}Uf%axM_h^LVTQ5AVbJWrQ@FleP0(xWAKb`9Vf zKr-?!gd?%E^;f?L??NNu^4SN=Q)q?28lQX0RL(8E;1xumKye&kP?d|I2EaFJ5DSUS zhk3)ECsfh^$!h9F&>rCA=6?B;Z z2WNwxB|QWZ&+esGk@jfd9U+h9Yu92K2Z}!FzwikXi$e*t)yHpmnyAlYSj9&uCH7V? zmfwozKwjCY_Q|7{naZ1-oBYW@tj?M+$l+#!N#_l*E)S5Qt^7m{2B+fCE}pcH84j8A z8Ynwspgglobb|8|Wv+!3OEMN7-6uB2G#I}u-2=&vff{g)sXa7T^M%5_fcu;E0u57l zOCFDzy+H?0LQ@M^o5oeaLtTrmnJTr`QkT)|(xNgYfBXFI+KV7mh9@dt2bySJcOPrB zz&TJUiy~lDtotB`4k~X1Mqa(WoElrmbd@UZLlFNWAq$EwOehEBsABD7`J|~Otc|y1 zN7hGR^AghM1KeZZ4{;VJ3gs>=OwO~&T*GQmWhg_pi}>k-7J)TvjIPS;RY6HoPu`8o z4Ars{T8$Swm!GVD%aBemoIh|Z<1cZZQ5r;Bg#W3MW{css=%w`d@RIUUb7pprguA*m zMUlOgQS_Mjk}AeNyz$8%N(oh|U%WyJ)gB%(ij#omeRQGrIm4`d5RL-3%^+2Uy;&GM7K1|AP)V7k3L2 zYO9NAyYR)O)n8|y{MP)UxDKP#NeaafAvm_$#b3vk%|T>`9W3}T^pR>n@y z8C5|=z~SBA~u&rV8Qv|Yk*#^JqtSh`5I%&I?YC6CfpBes| zUUJ^S9{Fsj(p!(TaJ_GmRfzv^kSFKeAe`=pDC(_oBic+?2Q1+MJZt1?Eisrj`aFe( zqKkV{oUP+gGOJ$-p2q2oGnB@=EgZ8TzwB6Y^-HXxc1gjRIw#B;z7MCuAp7(Mu17Fm zo+|RL!j^|X$4-Zay*ov~nc$0sV+2YQ)EiqB&AgL-Q7~64S*bs%vx$@Wq=_6X6{|_q z$bf@~*~PWk06ZNx#I53k>Fpbkx_jUSB7nX2B`YI7ZjD#)2qTmEDtH>>oyFC@U<(}u zq?lHIm!&K~+QB0dw-~M{|Dwb*U|w7(V~*$CL7iNJj#MSY&dA3qzB@UDyw*oo=9c zj{NTz^TpiQ%kQLR!1G<5e}p1oHKMf9uf)8RCSzWLU~GK3{3mai!l!Q6Gu=fk2(l`p zc}nQ|+hz(6M8i)YAY-2oO;OG5YV!^6asa z+i0r1BLYTV+E5m!K5L89kgY3aT=q=db5~FbHvpu6d1*lJ5}shUD!5;$vC3d^ps#iAS{XUJga5Te|&dHVjHD_qjsBsUuB3W`=;RphI45VHC zywU((hSd`&U-(6JCkQ|dB)WA(MQ<<0M=>Z$G-PC$pY@e!$=(;1H@FwpZxmX<=EF{ihCAam2=+=5T?M{@BF*W3 zhckF?S#RmBsWt9^XrY!|2X9G6R~99k7bbyk+lx>VlhR8yZZRyPk!Hu0hPEAU;2-C8 zT?^bLLxL^O>QwrTpKRngUzfBBnL%c;Mq{Y9S133t?-$D}(oUWY!f_|t1LzFHDfcC_ zHCdgWql9Q7x>oeq@U0S-_mMajvI`!JHSM=!tcFg94r?7weiDWS_tW0fIc)Pb%^Y8K z#6KrtG8!qOY8VHtb}Gv~Rcyis$x)#a2M|9$`oz)`rp9-R#WR5DtdFQ5Z~Gf5P`>lr zwZ#ugW%T}9gIQEsd*==V57{JyA{ES5xcV+Kbu;4h){F2A0?R@oTfF>KH1y&j{9H^d7JF*`Es$h%`(j# z*;D#qkZF8#blNVlGyO0$D%k?;aLQaK?3BzRE41BML}!Q2jOz=f z?x~V?ta)gYsg*cE!!h8o|B`0jYt--E?9#enFV;H6hTMPc-cc}*@8eyx=i5r~AgzbT zsw=YNMN>s9ttuTvMFy8+7HQ&M-m5tIYewENQK+eoR93y2onSU;jNDj@cbmK|u8`D`3^|8O$GE`NsJPGDryNqTa{AuuEya?n3s5-q? zIt}B99S_so;=0Cd#FqU%H+nSH1d&hD?|#$#*w%9peh#ay}TXq;Nnlm&Lg&s2Fg z!W{Qw$bB5f^Y+u}dO|M7lcnz1qXiC!s8t+L!)>hox~wodbx}CE23|@;6J#&A_LHZv zPbXn{-#%EI!RO3vknhSQtzv-OcfC~hsjbF0w$yjFeoYP`j~8D}&8Oqm;*DB_%xZU^ z_T6oy8AXl)sl1laT$lFz%J`CU=u2VWt+t4iIMv8>>!J~J70Wsyc!w3c-YP?wT5j5S0pVm_I` zYBU}9a97%3|b zWbDusP7;OzIpeNpq*0fmmW(7!3vM!G9umS@_3?5T4ksja!_OHOApeJuhrJ*v&WU-q zT%2i}k{6|wH$oIkH;9LtxOP;njOcF>egF&sja<>UnOy{y+oqHgg;T#8et&y4%(_qu zzaDD*J-?E*V-Cbm-#AtRvANdg_Dic1-AZfQZp}pEy#xKRf-n=BOoB-0GbFE zBhyrk4e>J&2J>@T(W}dH%dUh%sHOZkbF6mC9TT}(k>jfP|uEeGG{FQbZ; zA*8zuEf_FJzsBpcXUrHt#cD|lC3jJFtWcLLsSMuLzScMYs#1Z%Lo~LB)$ma@ofdw+ zZc(%_kCqw)tUgImH)d$Tocp(AQE77KYN|trzk&Uw3rwLjn#{$o1jY6JrJR3Mn+p9s z0oV3(cJ{Nl)%U^2&O8lZDGiR-&<3QXHxO=q7S&BHGdaA+?I-B`r>qcnfOTS= z11WA!nnVXl)|oN{*>}J>{w_iR?em1E%J_8|D4M3&RGbEploiR znW<8cK<%KalAIgp5CdlD@$6sMra1;M7XG-Z5#4h|OwmQLQ&z&BqXsC?2}(n**=~a@ zXrDM6Dlo`Qlan*_IS6DTW%qy#Xe~Bh&35Zkl*M{9RT))znxWe2((wunL>bo%5X-$s zrJ%5{ED5Z2^Aci6cYFw_7Tpm41@7}@hwhyR&Ih#-WFfGBgREVOVvwa7G%Gbhfh%62 z@Nmpri(A4m1a^2T;&g!9hI$`atunsy4G2c^ebwc4wPgnoex$Fn8o0EB;@9QL70yYJ zKGVE-fVlPbC&Vw$t(n6TTV*uRZGk}8JU=mQ^h#%h2oL#KNu{OONamE9-Ek=$f>u>E z^kl&p$k!2G>{;)Y#P#bhs52Pr>Syq*$(kA??#_&5cfm2QVX4Cc#-2wts3(=WfC8pX zT^%E2(dkM6D17WXGhcy)m2!^G)AOwMmg~&gSU{@KtdRe0$v;K3t?_3)5Sea@m#+Vs znDtp|*~afX3$;)ZPxOL=F*Je>aR|hD`z z>w{sQQnnSx6~?K|W@KP+;efVXbQ4~Pm!ndoeiul&YqoEKR65$ z>tmhc8g@7(9b3M^@Ww&ly%U#7r};hfUPRmD^b*cbLA}~zZ&knDTBUB@5_>79b^GAR zO@LxP-TBWaoSKKc-~w@8MnPQiDH=8_XOn7^OTKr0st@tLd zi2kq=a?dMhip})wNYQqpBu>CUF}12el`(~U5T}=Z?2XGr#j16ldnPhd&8Ry0Gu$>! zQ<6b8r&&)}tk5Fn!qFcJLl@xq1s#D(M1=?yGT|U&PkC_b6IOK4Yo{2+Q?d|NeGneS zsiX80jV)^%oLqq$Fu1VK_e6W{=g7Lz`H2{%GTkkjX-2<0 z)n1&o`IHZ{F51QgE<)7oU*X=B@nsq+>+7m>fJKIg{D~4*GaeM0lW!n5)u#=-L zB!AqCq2)i^XcR1v?{?-NoQ`RJPsJTOwF+^DlAdwSijLzi>-Xxq5dD&6>OJLuq(#h= zUc7}PnaE3i+H?=~Np3G!%gMGiZz3FyR6f014#{b^zEd9n3 zw+3NuZ=o{h?Nf;7q224WcvSUDi-WcU3VpROrdN>w$ca%mMXCkO4VMv_*W)5K(PK^m zY%?D4t!8wub4{oJP0TE1vXi8AndT79@O4jH;s!2#qwTeEPtYmy5wN8x&Y$qLB%AyZ zB#+6ylCp<@wpHvo);>r}X3zgtwHfjLxuouLHJeUfvkb#_F~Ux#(VW}!r3|qZuS-j7 zI^Yq#ObQ+C`^0Y&K0)O=X}-k>F+a=aa@+*KI6x3Ha_H$roUc088ns{v!Vdc7<@bJK zj5ALYNh`rTOuspBnr#QCz?DY96vpR=?Ta^}Og=m42X3{@;IVvpfPp-^1J*fpa2d`0 zK70GJhyKYT+a1lwC~Y*>kQd)mn#$f`GJ<#F{ca>j@|HveQhF}VN*`r@aFX+Pc|P=> zDNnAYw${R#7p}GF$E3Za?!Bb!Z|OX7&PePG#`(w08J!nb?AV{b#Lu@z#Ra%a_DTH9 z4-%P=*D{r`-Qnydf9Ehy@H7OGW?nt!4)nG#R$95TxNx4@kIt{CiBs6?xDj*m)1>E} z|9Oa^D-=|a#N|3E(rKB>)oiHL-VTt^zF9Orj1VnXABx2`%02pEFV9CgJZyiG@7}&5 zk2Kg;luPAd+DIxL{EU>=Obf3?Oaf);h;&&ZJ$`P{N*mwPL^X-?JszC#Lz?xzZ~4l$ zVUqv*V!`nrS>^u^LW7azzd9(iq-rl(5Vv2{%sqkzpg6pLUu&S4LpdwppKdkl3^{Dd zDB@RseYnHG8ZVn2oFvug6CiB3BRy@ zQsv&^=+0q#_3c=BXUvIt%Gooc8v6=!Nvf}gz+bsyLSALKE{g%t@L5vbyx(6>c2O|C zEE6L-rAsuS<0lEjwj-Y1;rqfu#lsd2@yTYN64xGLzXH2FD2|+jC;nIhy)v_7Sq-65 zRfOoD)v#Rsg2AnbLGdKm^3u{ZU3aXIM6ryB5x}Rg(z^&BR`txXgOaP+$aYo4iBVc+ zvK2jX^n`&}7NcyTiRsX2^?i)_JP}#L=Fr!1wo4XTbPYE_wgi?GWBO6=0qoOAHUR3c zp9T?zf(Ilkg>*z=z8B>jUFOLI#8CnL2IKhQ zNh%-kMnJP!wes!pP>SN1-=Sm%zE3zBr|&-8)sDNeWj9zgxP^EL1tg(FFwF=)R$wL^ zeWYdjANYpS@s3WmWr8mYbHldZC8+Xgz_X%@zhUK%Rc%el{~1=FYSbfp(U}Og3|Dpw zT*7reu}Y)3bY1352EjkK)-fR}9}M;m8ZkEvqC-h#Ew;Vc4OS(*6<=DE^gW|gEs2!b zfO;)4;%x26oTJCLDRO7S@RV5U-zbG^xMLX-yN-Zda`^FEG*W_8l=X`)9G*4OAImM#GTBOpy znXQ9*ZksC1VU?6xi?p3yrrY5NlmbQ`PAeG&m_I~%a@Qit8J32M^hMDQ(QNO=?Qa-4 z&#}E<2naY1UCd$SvTUkU!J$;@1RP2;~2gzO2Gwggds(6?Qo+ig{lcaLQvRU z8c6akiRA~ED-z!#@aP#Dc)fTt19=6@knA$ABz}2nadnz$7vnJe(YirXLJ6(3R@XYq zZck)niU@I3gXfC7Dd1_M`Jzbd(MYGPF#3gy*;S>FFV+iW&nLh4dBO4mVvm>m4tk`q z17W}93xs1HS&mJ}mj|b|=D^h%HCaif7OGrHxiv<077GV1rpJjRaj#C~-#~65GhamT zSv?PQeYe!)AYNz)AEb>>Lv7^#xel5b1BM}JhL$}ulW(zQ?w|=G$Se1@)t80h9*sqr z_8^~FKJjB_Fjxl^Le~*J?h_EEv^JPRPwgdVt{}}73ZF$+3m=RVUG>aT;&ac^-mRM1 zyfYzHpRP1-*0W#5M*wG08fj1gRvujQDwX6_kmcK6q`2On9a}!GZvpCR&jMaK$(^BB z5nD&!`shBbc}b5w0AXfWp#rf8TRq?h3G`FEn+suW|(# zH3KWPr7(*<|Gep}N?40$52GM*&)1)UhJuuc=oku*wlNf^lgV(%@0;`+8d;Rb?* z0KpxCyVJM?w*WyJX)L%j(70O?+}%C626qSqcXvr}ch}+0)SH+4=6~f@})6Yn>E1%JBnZfc{u2evNl{aK7uyb{J!5}&P;%L zApMY@YxkSGn8{MnlF((%wQ#~vbN_mDPN#Dj;vgrIk*OOGf#PvHy9T`jDMgAlQ4gKL zE|Sq;D4#69*gA@E_+y`K;Y!=m))Jn$+7oY3P1Qxq*Y&+i@uT5zND7gq-10V@Zq9Ol zzUhntDmi*3CO5tJPojD}s>O@8f~uWyK?H-QDB#sL{SeZ3Fk>Q-u@3v!aD8MewKrB= zC5WFst>b0sr6_FABz*x&oDOETg&uWz-Cnj&%{x3OmoE6{Ld2Tw$zcU18S<)iJ}ME= zBHWzy9-Dfcm2d<*7escbe!VXO^a_GxzCNEh-Fj((PE2oCVZjyL5%8=USS}ZfnAZ)K zihh!DUx8dS7^|O4N|L zo4ikFM;c?O908L9;|x8%F~){H1T}AP#)_jbO3W7s2tS%a1$_yT3xvLbuC5c}qlMs& zG>SI5vM^;zeHYJ+`MX}FcF(x`^enkv0yD+}F=&{LuCr{Z1^m>$`~95uFz~(=Z|(Cu z+xSNCo;`mOt7*d|4b&2zu=T4Kq2uG&A=uhn_1XpL6xgV~CoF7@CkW5#g_$Ajo4B&F zM(+Q+Et~=c>@$eUEc)2cfA9B}nRm7}$=|HeDNN}~{4HVh&qvzk`;>AoN5+XsRUm79 zgqGf_2C(Ux`Iy*cL~KKmNV<_d!eZ0baeO6=hrMpi9G!H0xgj~S2 zVl^T=o&4{q74zadb9%GZ9$J*=NPDuP9^Dsig4Ul!sakBm0N$Vpi>BXO+nE1WyAs+6 zNLZabo?EB~i2?O9XpVsvX?g3Yerx?daEaFqZn&wvGoyVv>q=zNCN%6@Mjb#f9|e|j z=I$?sJsD=luVwq?X(Z9Pjd*U;Zy3F7;T0fP#P4j=j#?H3hcWhd`B$Ti$#QFH6^L}< z7+B5RTx`l#7)5F!R$H-pA6WMBC4TTEYU@=IX1;!&wS54Zo1|wk-XIC-6K7krq1@OW zM2mfTMtLnNC0Ze+>AY`u$1*-xlBFpHJ!iWutPeG^e~YZrsb9L!mnq*kjlW}G^bJgG zT19J7uU>*4cQx#A^T2Gwuod{(UX5M;w?f=4)7_Na&@a^W_anb9b2JD%duiWRvfm^z z_vkqf^C_gA+9QxnLbnfN_HZ;%=>0WLiCkw>Twjk`sKToIz7-I|X8wlma1)nI6hFj7 zP7y6)AA@!`og5+Zrco9x#AXoEiFY+#LGdN;;v3E9nbHMvxvUlwllQqUex`Q<*V|+~ z*1iLBsNW~ZBX~BCNA0ytq!Rn+m$5qul3ulVLE6j)sz*rbqF4tlHhCBFBcR%Be4Rfm z2>bW-?ZjiVoC+4~QXUTd-S6%s9ZBs+rq5TPKLxE>{oL{~MbrZf7?ZuwqEz4N9k<$V z8PlcR@A4vj!jU675)QcEmuAgOz*#?9YSnS<%6pq6A<>Sq`@I(jovTRK+v9UdqY|s+ zPgXP^ykt}b!X-G)Idwxp1U`XlZ!^}4iY2URea&~vt0;%QRB9*|9(LpY7C0p4CU00H z0=WP*c_+E}xZDj$oUnIxZLoa9hML7ExXp7RUw4CmL{dqFN0=`kg{&|!R5Iwp5sM}C z^L;K#$}>a|rjM`4i*eYS5^Xcd$762z=EpT6iGYX7FnFA+xY5B}mGd-Ny~ZYuIbdu~9SqCKQ1hxlwb7LO>`cKTaV zKc(*Twd1a&TLJd*x>^@Q8q=HDKR1JzFL%IpSsrJmf)BKkrwn zx7jC%tk*AASsflST}}H>BBl03tKCKuBLRNls6{x-fxCz^G5UTbr|HQIF10<6Wo@P@ zEV~f4%%TfXSP=9E>R+HO2syjcydX)~zcspGihy%7NJZpInsg#33g&0cTv&=Z!mcOu zc?iKDX=^0fvmmkD|HT)f>NLay8?;80EiUBs6`(!Z=ARo+&XhH^Fsjc^t@?4sGcnQ( zbzhIe+&DeKS};+5H)gFOo9(HErQmcykLijv<+6zAt@Wm2e$JtHzF5g&%Wp03R)9m? zG+MP@OUe9KhO6U#zArGs2WleXbInSJmO76Y3f1pM+MG6ig8CWcL$XiOJ*&_Wx60cH zXRNEpJQgzV#~$1|M13B9KEu3zTTc1k>OJgie;f$+PZS?Mwm(k;Ug#zoET`tN8`Ze5 zm)hYyWDv>g*L{aUg)4(m{pEXKa_k_@SEP_vYp2I?WG0Et%U<`U9Pb*ECy%OhS!SDy z6UlH}OD{xPU9+Am1_L86E{N{#&(BJ(2l4dhsS9_~v{pn|(c)a38$WB1FKj-pM;_1M zobDP83H<0N4tJ4ztn_wA|2nH(#vx-;`>vJamAAaZC*4QzyJ+uJ zX}#Of3fo{mxCXzUWj2m*C2Jv00@A-`1TjpVSe6FeQ%=~j%SrZ{%@(G`(-Yne+Q2WA z!Sk;tKB1!WV-HPgBU-4vc*S??EvUM8SibCtLJr72)hqlVfYZmpsfsY5ujS)4yBlxT z6(CR29e{Y8e4@yE+JDYR+Crh$=O^7`Qs!|M2AuTNwE>ry-^NTjf4~;IM!;C57Q5=V zCYON@H#?Gf#Z~;AUZ?JAS$8UZ7eXb~RwGR-^EpA9RUpsJBJd)=42$rAfu$38utT*I zi1QtbZM1PP9us@Y0n^Bg*vo__h&9?tsl6s+_ru65m-t`7H7ic#T=Bk9yvU+UE?cHu zA*8F`6m3NhN2uazMGSqMTIy0I=k{Na$>%eC7-OY4 z{G!xh)PuZjRgYl|w3{)mHEg1ZqN-X7me{klLt~?xtf~e-%Je;Z*;V7YzwG0uOCFD(j9C)c@yxKPD}Q2g{ch1MSgC7Z{3{?0+qagi z4x$jOsMjV~*6Au?hh;sgVctTp3FF_v!oy!oW7=;TP`$>Pf`e58q`d0d_KwFye`}>1 z|6-5OH#zsK-amThV!Dz-U%q8&+}C1Ac>6J(5Vf;poG>0eqlK`b^eXs0bfvw_w}BT& zDBzVj2%zAome2bM8kHTUIl}n9-7$-GRqeIC7U4V3Y}>OQskYU2BYg3AcE7p5_71)8^DINd z8~nKZ^|)By%#1n4L)|9CX0ULzceAwl^lO-j9AzzjbaHHEK5!c| z&R&_v<-_&eT1_@Z951Y9E#k*;*jJhP^Kw8D4o6x{7=@ZYq*8romq6#7SUvwj^7U74#h!CZ0tmAJz;++Z5JcIoq4%wo@D&mAWE|Ypw{sx@rOs ze7hwZhO~}8t`W|GGOp3Deq3dAPcpk1FE>X?zr5Tz;|%k2I}5|juI�eKF4Gu2my; zZ#GVDDgyceaw1Vn!kEgA_fP0o+2S5E+u#LcbX3BLFyL)~XK2QY^qb79!e=+cSC=JEM=Z}E$$^aa0M{&1KyHj?4HbI&}0 z{j51mCoR&KVlL=ZmFo%|M5n}F^~VTfZvo&JXn)PIn4MQuSp~sZOpg+D}h-F z+If?(VHT()QNNRH2mvO|Gvz#u8FD41IWOU-L$%B5Q>~+$L^~zsi2f^Jq?}i%wfeN* z1@=lfpI?>z+q01c_HMQL0ROs>pw9!u5%1-~Sj4+(OA<`!!hLv5g&fXG$O-FuvWR!y zaUY%-V^=Fv(=zqw5*lH;P@Hsr^>?4*)bN29wfdpNb_cvbMBA2);8>^YS6(4?6HhwC zdzmD50c98O6ZZo}!nxlt6yDaeHMOai!>x-;T{uF`e6CT=X+6R7HWqMXey0Gk`r9Bu z`=qzSP;^czw?o~4u0WS`V_PztWu8~WeWg|F&-!!-d=<{VTycIRPsB-(IRH;bN zJoR2*00YwDKoKeoxL+ZcI{O!+zi9hI5rU2vTZSA zu{-Tp6!XW3Fcfea?+anU@cGfL+t(80rJ}n{ln_?WjP$2`BeksMU(x!*jJkLXu?_^{ znn@*aMsrjHN}9pH@k4&na-Yug-+>(nFz*(ls)o#xa@Uu>Evhtd#u2@SIR}k=x!^D> zH-PYSRlux9WUsI+3nVOoUHy9;A4Qr6HsG}%lc5|jXTZ=j0b_p?*%CfhZenaccVd>! zAq?r4_k44Rh9q$;yi;sWC~(}%iIy4*EWb-w3qzQYmvpB-)qBxX>j1K7T)@{+$d~i8Ch3)^*iGHtisi7=xsRNxm5aXi>S9F0vZvE z6cP3pA9aYaHN13m6yMusy=!O~)MY#Qj0d$ATq{B_c9XdB-DHV<14*&4u&vlZDDfbe zKUL0LbdRA7C`ZL@iZCp>3=}8fI!>Isiu)W|VeLKeXjvVAdUB5+<-$7zjH@qL@b{(^ zcV==X!S`OSxe9YtfCAg+a|!l#_OTTM@Zb?qh7Qg5w&`|@}P}%MX@nuS)w6wM9-b&iwJbz zq_dXSANtJR*>zZV*?-9 zL8awk8pE`BUXHMkMu#$AEkiAubK*YGk{JU}x9_>;^1A*z!vy;zI!;%hOkle9TWr_! z7?$yTm)A9N#&z8L=2@;m-yX94d&`I>$KK3dO~TS@*X(1ZsY`F34F{u~zk%}1aVS~l znXz;AL#^J=#M=e_8Y~I`?_La;x1Y)^Y$Mn)86_ZyqehA@(sF8BOmz8 z@Wp|iUjA$x4LUs^kpubGdJai3z;LIqwRF@83}f$*z|C3w%3lXIV|!oTY~EcFqjhdZ zIYH)Zv-CdfsNas3btpK2a9vhz7p@+zdBL*I6luHY%-H+FA{uK!K1&qP(n&UR=b!D#~+qTgzuAd zq2r@R^KO`1pbxJkm99!z!o(Ke`K{{dA;${gDG9T`cT z8=XP#vu*J2g>CTN!YugC!Mn_#r4c@f3Ip4&vll)%E4q|FlGv-nzbjkG!GiQYLLQyXJeq;UH84`#>H-QsMn6nCenMA1=2_yqHZQ^o+g7t znSH@{#*Zs4ov8H_(T4w3UdEOqH|h-@Cw@YB;j< zB|A<_K0oK<7DeV7&-W8A5v2tyC}XdpZ=SUedM4LBZ^=6^K2L7W`qV>xR)wD%A1=?& zdNWU}S}N%M2e;SP@^47R+FBYP+DcE)+@5EhQYJVQI;@||7uy$CSG-zoe+{O(-7gi; zBRu66y|{8K%RH<104#WM)@ZdGgmJdrqH3>vZ_p0SJ4i1;uh*%ZvG(yF`k4Kxg`MU3 z=H_}^gyp=cMLM&N^9-hwN9bu?$w#Zcx=C&1ZcEqQh0iK5{CIzZ(JJl0)HC-MkF3RW z>CtFivCUANrhgMQb2)I(Nte7Ssy14pA;?XP#kL`k6o;{sVp|sg<9maUC6E)!iPO&N#)FngB^0p(LWZ6S7yIgdSh_58&Mpohe+a-hq)<*(8u{4R|nh4mR5$s@m-*xV*YSc1Lk$jyusz|I^fcgY0mxC_TinWBE z5ror|q|!S0-qoG`qV;F{T-`KLO0JqtC@h|>U&(!J=)-`E7$(<&!cg}aiKKymp<8SM zlnn7tU}EWj+wR;C!GQDlJX(aqQ32y@J2}`^rrz6Ati^|)A>{d;;{%!e>62Y_e1vY2 zVI8g%Z?7k!44bKy;8-f22s~8p3;KPU;s<*h@Yzu6Ta92J%yC0+WfWB9Ut~fZ{QOa+ z@TSuMO;{rQ4;n?HeZQRgE3JO>?MT=w&Li4*4{cYCeW_F_ix<7kC(Uw@!x`Woz%PFF zi{83xwCAzV3_j)8Cpm}{Yi=!Q|F^mhUwURaGy8Ye@j{RN7ySeCNr#z>x8#0*df^~2 zqpRqrDiH;)$uu0VOn!v{e5JvVcYk-&d-)cp3QITX#`rFR<1pW@*-~pR$_{2= zQ3~sabVjXdwX@>uY4Y^5)UjD7;JhwhUZ#SxKmJE8rP6ntU<9qjfK_WgiTTp4{Amv> zZoC<*$B|ZW7l|3*l>_3c+AQ!^6nn+0MXW<_f+Qt?=j5BgVJw%f)``|JthTzlp2EbP z(0Opdr;t*X9dGQu0=ooTzXLD2k&TQTzoPqN z@ai_sW<5cBd{^JwNU3!daztHExTa!Bj4>-Dr-bJ4VsR=wxH_8fatZb`%k#A*I);=pw%-ik+ zxn<^a#~eAxZV6>XU4O+U=3tG@wfr)hQbUy`5L-ias2XWm*#4b#&qQXRhgZQMKhJ1nev70JR>|_?+7Zv1zT*S(Dp5b9kJ!=}72|4(j|Hp+9HXB?KRzox^mSZf)&nR; zSGgSe)P)$R;LTv_teQq`lAp5UO?=`{7M6E%)Zt0*5$9tDnn7G=3`rESbti7&FvzX) z&Z;6G7EzlY)_uM@U=K4r-U*sWMtOw6w|cBc6;P>;z7~zv3_1~f|Y@*gUyG> z#??qSXaQe+cXkz)yOl}5STU{wbLvlIs|#r=z!{wGar1FMUiC_~wy=oK8h2Ht#Ug1h zo$?%i;J4)&I~STBGT-2JwXt=$k(I|Zwg-|RibLXT@o$;)601NuF%DmXGDl8J85ORwICOO z_hS;Qg*9ox#MJol-W4a39R-QmMeH2KopIO3^YFd-WhtUq2^3F}iwX;PX^XQEbqa^< z&RRML4{OZE94z(G`v@L1DcrJ%9J1n~+}wHOw_#wHqJbo-E>p9x#nKd;fZ{vptiE{X z|J3_wQCE>tW-{f>CP_LxNwIAALG0&p;LQ|~{2wL6y6~S?{HGg_X0hmTmH6w?%e-B!#Qtx~`cM-($H81)z~}$U;0`Ygv^VnHgNVk1^%63WAfmwpH@< z%7tk$SFx9Tbtlnpn{!u`m`^RuXiOsv2k?5z&mFU~h{pQgqn{^Ihvh0Jxhv78U+?MY;%xk_p!$sZ8hP?qcOr`q-g5I%S14+N#mgxm z*)b^IMBnADx(DY5i2{i?H+_O2WtlWGd3f!;O8Rg4BE40fJooU13)78{PW9r<`L$0o z;lERyYY*7I^G$qI9j&D-@5eXknL|`^3!{?|#%8|^NA@06{*@mg*y3Wnz;Fn*I6zp( z<6Acm-7K#Rt>iRY&{?@qwEfCad%^)1?C$&XGe_A@ zN=seh1ln{-H`+F#vaV-wli00untpKoIB?xtJaP!uaPqPM{xEE@j`R}S7w31kTm3}( z4R*jPu*GEfwzB4opQW5YL-h;U=t?AX@P{RygHS(OwP#%!FmqOUsIR1-BX=dIKqYpp z-i!o)r40HW_=Z#0!La7zQ>n|+(Rfgd`Mv0+s-4;<^2M$C;m*!$ z8O3&kN=;maFXx2_DK7nTb*D*)gqs%LglJh3{a{N)0dkV=ll(XuI)z%%&yLGBzU=Vl zc5;(p@?;A?qEEaa71(E`gZhhhEfV9x$IjWAk=MbA*d2aT0mgP$IKj(kCld}NitZ2% z1j`tyuHT(xk;7jO_q~%>9*-sz1y1=}h2ABiq^)544R;bW<2REciYP0Ax{q%P#?j0O0CkMo`AT+w#HRJ`rM%M)i(UJO@#YfGlQv9 zp}EWe+z1&9z2)N*Eg8^2IJGOvVaF4&`pY8e`AK8d->dJ4UZ+X*i7fQq_7RV zsVuH-XT6??R0xSXBnx45jeftd-bhJ~@C`8#$FZZ=jK6ALqQ$Jcz^ z?5tuIjt(D9?8Twhwon@r8^?FNtRGBl%>GuAjfaot4{hmr?)ewst(=ss6aWSW0DyV< z0iG8D;xDoPx$rlT|2c%0yPtmmFp%InULC-}Pyk>tVBj!dp1S~Ke`_in02c0VE&eaz zH6ju+JObP+6xhENP> z)J;xJX-2;WDI^P_c`C!6bdD4Cd7zRRRD= za4(23u&LtJ-zYOL}rSJ$Ch?rPN*f`|uxDbvJoPd%Diz(Fg1dOx-u{B*Zq#mG9jYh?s<_UoCHK zCJ11b&Xd%&S{usO7UR%}tr`rUMyovo(gx@TgY2dlip1mAG_FDxe|KBgr;g!fSfkaf zIdt(Z2FWejz0MbsBsT{!#8a!Cf*A5Fz^*0Yz8LG$K@&z@5ksaJ?LkA%sV2G5GKe0d zbsnAK-Arxy#-tYnJlm@Z(%!Wu(v_-cZ>BV;2>w1y!-qdIyIP{h@3d+43`kIyJFPYO zY~--Y=#k0@-n3LIMXV4if!pb2-^FF-K^OA$n}1`i+kaKc4Q|SSup1c+eoVv;UNqu5 zs7=CxmqaH{D8gLql(dL@Bk^15~~GdWB*3Ri%xaS z6ew5J4%@)nWxCO~K^jd`15)1YDYMYhA1h9$Yo8uQ%hX}rVoztP%qS!M?Se3JKej$i zwk}=bla3}V@4doQTO5{f`N8OLKJU#;P5_VRRe#gDIoKH(-F7CiSw623!1&bo43Ko^ zX*7Z~Kr+H1@r1=iYD<76@&%mQwt)m8=ANSiO<;*Uj;9_pKapO6W@ox>(>vWR*t2)< zP%GA_5{T>7ni@VKNb~J|qnrdHNW(?F^@_&ffnNug->FJ5h_e>wYVAn12CaOtBI&Yc z>*pC!31*0-DnayJdhdk*-pue! zVu4PCD*Z$uD|-VYA9aFEs)3PYzk26l&9*TI;UmOb#t!eyJh61fQdnc&EMhZ6Q)44D zy!4p+OaK22ZV~mfPS`AXU0Y@E zvEp6d!3-oqyri*39-An>lS@{^O|8$kUi0co&kiN-nq(`wzgm(pY>mFzy{LU&oFr;M z%UaNcD4ED6!Yx(Z-{MHi5tJP>oU9G+EX&ZV*P=3)zB6t0v6rffQL~qizwyA(MQGT_ zP2$KQx@e%7f|j8$t@!0~36fB%Wv2t2riVQPsxss1{M@EHef0da``<3o-^!ayr|ZyO z?nt)$%D*% znAdl|I?osiCOf5n2|!B}8-TlhFN=*#$l5Ge8zt0yO(Tt%ZF?LBnkC7F-W5TMDP7 z0ItA6B}}dSvTGaeQdIJU)W#hjjbwZmI=Nixl4f~GBL-g%4z4!gss~$l*OdDt>v39w zA!-_4^t!ucjBRnxfDT443irIeJHa2w4lEF`4h+3Zv2A1nGqX<<&ra;-O?RyhYuG7Dj!-V#;TLWpPh& zOV1N=S^={z{aC1C_S{7QdhK3%e`+}dcOg!fno~|SWLd5FN66Kd=DJ)ULgm_^t}=*4 zT#;T;06g7oGKTcKW_x?#O82W-wKQH><@c>Bx5m>sId&tqDVhPDl!Lfa%^i_gX)@h& zCbd1uho%z_-sF3*{|ZtJlA(XO#{~X7rmzO%hCO@Xlw+iRy^u1WL*k)EyncV?)t~z< z1<~Ja#+{(Qn2mpwG==)-j?1(S9i_C+7RjQ%dw^y41pv@iY$<$jfbGLiLWhI{g0$$L zv2KdWo}j14<}=E_{t@V3q+`xLy?e|*Nu#A6w-&5ivQ9?GGa5TXDHjcy-j2Eq7>%MB zILxsgDU`EZuql&_Y4)KiFyH>#I$-Y!hOVP!n$1{?Rr0vh@^w3vQ}WQsJp*RGvJ{nB zPR8Yd6dBV%yu+^3D#^ua#nhl;i}~YI#Djjnt$CJEOOl9XtKLgS^1vu?)tlndmimer zPcK~cvbW`qV(}VSmX>O9+P74-QV--us&VV8F8Gf3Fx3`^!OfCIZJgz&q>Tz1Pc^%a z3KkkVWppWa+UxXn7Tq~9!3I3q$xD>; zxcT-L-R>E{xW2yVeKY~FS^YKnK<;>d0o{8BoJ!t((VuSHA3bc*`FXZVyZQ`}cw{_m z7Lk6Ce)L#z^M+h`#IE=v^pnf#>)`82y35{{ER=M#_xPR|xZ&*5ZdF)TAUyxYNdK3l zKPAPA7mKKpXDtwVR#8=Fi~1rv8$2BARvxmp&f{wnpE}rVBB<@KujDWypeWVtm$%ep zFXT&O25Yk?_!Vuigvu4kxgN`#Eax~DSfUbj)hfww$lT%r?dpDpleZq$I#ubccfUM2 zz23Lib=y~%_M5Ix`^r${#U%K1Kml`4=GD|=Cef5<$h>3a2g^m5My0O^hg$ObU;Dz= z!+TG1)q|ajVt%SwqjJTO=S_sD#;<$dH_sUvqXOqjMA?^VC!I#pg4N8Z2C9f+W@YE4 zl!f1@=j-Kme>;}&t*4X@C5-;0oD?Tv+>j8n9--c}h-_9Exl(<3jzcG1AdRJgBk0w- z*YXS)BZ<6$vEj12&vx_-V$>@o*OJn zhEx`I-3FaqQn|04Hl$$XIa}17oXL7H>p?J0ay-M6*;B&++_JCV|HB#h4;dJL%Fut? zhyGo_&cc6D8U7hbNBsw^e-;J8{Yk>1e2eFOi{?r@$lmRMuulL0Tzwi+X144VSL@LnODK5e~4?@oG55s~C?!wiz#o@nkMA-Q+EuiJ3Mx^_*U>gxfMAVzN9= z186Xtc-j6*PK0nB{u>&(nJKNsEkqChq09dkh5dt^?AwCje+!*WO}7uU4b1=GdIf;l zw9@z1YR9Q}U!>mFY+JAP#<97Sl3}m(x;1@JU*5M$OgFrb7`_2DPZI#nvi=S9zkmI| zZ3Vq@_6dfQyUYex=QV}Wa>U14P_Ok;Oa|>vX`T`5VR+S6TS2IrLCBI8G|A$}oz5-c z#3w$0m1El8{3msDZuWR1d`qK^bKFgnhNTjd+JVzV^Prj{Ig^*e4CQ9TW@Uj2IN}jcw1f-pFmIk!Neo~ zv8)E}M0g@_+Hjc|t~)7~_?;Z4oS{6vyDViay)HVPnj>2#UMUxJDkazs%yJW} zbvOGwl!+OLlRqc4FtzKnDe9|QJybia`ZrH+T-OpFc2P{DDZ(*|uNw!7mNp>D8dY3s zjuGntIR%$$l5;2SZ8%AqwQ$&#rmjQ9!{0YP5;iPSg9@}tDwm35+sXt3mL*lza6`t; z6(DNIc|7XzLRpi^Ox6#=QcskOiX#H_A7vQ-7TP0;?`Q5%;ir`4$#?r-%kKf4!slC5C*3i_vFeY}v&Cy4l$`FbSWYD!%!x0>#Td3F@)!4!*p2Q4SYhOW(o$&lvWmB6&N zhQw*j5|a;{(imv925LDwjpDnh6H022pw(py$9Y>en(&Hp2t7n3)*8vI+MrGq-M?^# z!vnoJDJ4BAyPAr9-Qq^)!GEC4Q%|18Oh_7GVWe?W-+?teJUD$X914w*_R4YYiLfkj zJ9ZIdFIUr}Z~i;c5#O1-?NrOVpY^=Uox$7aMBdQa}%k-ICyv(8)c*j_HESqwc@ z@MG(E>yVoLisn^cPiyF)-b`yrX92T4MXjrvq@uF&%fHf|FTi!=$6t*6UnW^1{HcQB zI@E7R*NtV4VLp1p;J<(%LU}PnLQ+<@UTFR*+=LV>@b67Ye~J0miD)nJtw0r+W6+XaJboE8F@LEAzZ-KQra37Ii8? zL@eE&pU#6PI+ioTZHrzFBj2@Y6_TN9)IEknkDc1(LyZkVF&g}kGit%&hO<5IFUEi9 zbXya<(%`#-v4;^Qk%_WN_IwiuUP!~6yfn4wtK}ZO;M0EW%L8d4vtiv)ZT$TVR=3cG zxuf-hG8^s>tEdOo#Bo+3m*xjmd_;^y6s(6HAe@(g7ihO|b-r+QHk(rmLUWocbq=!} zhknXjL0Z%L@f>MUTW-qmwjGwUO7VUtC0P=U`<~-OOT~D4tTM|@`JJR z2xVn)UiMxdW0{5SR9>&G)M0j#b$wNh&bdgHXzdoSl*CoK{t@>yc>^EQqGbN8NT!i? zs!0v_?L8jNw;5R7_--8&A+6UXwQ|Pj9OItaYBpDBjwN-sL5&>-yJM-6`tiu~%-K7U z;~+T=X}V&SNDYtSaV~kw90(Y%HH(ll{|-5K&NRhBofX>6PJ|i*r~FP7>QTYlaM*Cr z95!p&m`FcT4%cXQM!MaAiJen_;4K zz-KeRq0U8`>QJg_ppiI~Vwj`%f~VBW_M)Wb4!AQa&n287fHL!FxWPK_jBXge(L4VI zm(y%$Zq8M zUOiSLgl#l^gVQLVE8*a{AxhMpw%`svn;e*Kj-QzA10`S6#I31M&Bkj))lnA5uMF^5 zz2zuVbz7>D=VNTr8_$@w-eSA1eJD#qP}ySf48Wo#l#J?Lj7h8HcUPYan$L;`Mf@)5 zBr-)RcyT(Z&aDpI>Bnz**$60d_)2b6MGgu!nX^fqY%^!GabH?F;H|QN zv8{pp=#BxUVbJ*3`ud+s{qItQiQ)dV=!`ts{yS&+1OUMQkBg(iHT_mUf*Bk`rrCe@ zc&qLy@D6-qUr;Rv(LV#0ipgIuWnPx=`4l3~|DAP^f4SI03IePLvCJpH*+*YE*=YwN z3{%(Ja2Jb(N@K~EgQsdLag77w5=nGb3NV|zC*r|SE>7*rR`vw}&c5@ZO}rMyk5xz~ z7%a~K_}&WKg3ZO>l6BQhKO$i)DV+@Y)tYYPc6$^cVD;itn7&U?8rknFrbWAEAI=Vx zgaU^%NY@}vftIbx8=y@AoDv4TRPt%^go!4G&^!rF@Dt zw98QphEfA5^f>b>XjXn6Z}N$JDJsxZt=tsAB6hFRvLJvbFWQi`42fv4or|?hfymG-PybF?a*8H;(>;T_Cdb>*v_Y9 ze_hp!9$^AI0iMhyF$i2t6)6;p{WYy-OOIh;u z0E!%1ejC(@0d9(^q$;S=Ck;=dk5&l@L@|pqsa@bzs+#;1)!Hrmy@Y#9>urWZ%oCYV+fJ|ul89ZQyI(YK^KsIsd^5vz6#xLE$v{zgYjwSb~}v;c|O z#VwKWVCbkS;R>bhkW)=~5%f!9CI_8(E_3Af!D_?wlH)|zuJvQ%j1hfzphN)*MU2A8 z-$xV+>$|;YNol2yqY5M{6qDqM{2V&s@!zbA79{hC@+_Nj+8f}~KFz0980*@0TSv1Z z_sk8HOh^#xq1^0UrXU z_TT7c^?lhNCfAYVU7#X=4aTgPFOGeAB6JFHcKOpn_?y@BPiw=!JdyyIVXyMbNWS1` zt%Ex=$4qMv^u~t6d1YO)D!OFI0kvAvKQf{X8kxn z!I%h#o&UwV4(HU8`y+=*{|BIP|12J6To>?cT0BmtXkzBRu$a&?=$mXwi?>RA{^1Wo z>^FyrR+D9Ox)YM+y9M*FYJ1D~hN~Czbq*tL>W>W_FmCZwn|oV{Z)!oKyo19%dR?Rq1{+!m|(V9UR%C)vmsUyU!|< z!8>1b1#0F@bQ@E;U^wPM z6!{_dpgf-0+@`&i;n`9%_TdfVJMYpe)MyvNWorU&-q7g|Zn_E5V4FOUty68?(Ir=I zUWBrv`jPN6fM7U?4~@}XP1ZafW*W#(X-AMqpTAe)*H9dd%Vkp3vzSb67q_+(bZK8K zrvX-VVg%b32jA-PJ-~$!Dcff5NcA*L8cx1B$DNkg;AsJc6*Hv@GHNq%qFL?7S0+u6 zDO^#-$yx8auh`X%)fEpcuBuTVESGeRbH zZ5Z$zwOw{GO9(^Ui&eCP$>pqHFZpX+K?X@l-ekg#TrJ0Kkq7JMj!cI0*IC$r_}2}Z zd&@FeYga0Gn!}#~WC<5C<2LGx{#B=F3zK6dLQR5!*R74ObDUVeMiQjQ9!6KUKs+Fl z@Ak@3?7T`+o%C6)tMs#)nK!E?>cK@@K9;p$*P4pQ{$<_X*DZYQkj|U}q)eT&(1D7J z-+W5+iRgB}qiLHHQmJ~Ua_@Q%!n`(NSl4|RIcObfuU58WwjykDEh1y2$ zRkx63Yug+knp6Ip&`^73t|pEy%|p8*^=YYwP7RXFVxr-qZtkX{CS9EW`ocr-q4j{> zLA5TFCl%)liNBu-#_tbaO?D$KDj~B^$Eb-$_~&)E*RML9R0twjz^ayVcnt1q^%@LarX+UxuKN`SlRY6&kf0;a zxdr!?eZ9dvf|p7Ar;CBc8LC|$sk0$3)#FK$N6`& zPLAHQ_B|C?pPITtJ&Wu$gkN!IL@ zfuEE>CO*F7*A}lV=uXX85!G>{;Yem-Rn$uNecp)!ICG0;lmM9l!7gonzR#73q3#Me z#Bb3dwU&AU`z|$bkjQ|ri*3-5+G4*M3s;*0?|w2LKm1KdWiv11QMo5bVx8DI;MzTY^v$K znC4NwS#zDc?&O=_y6euY`QxXxKrHkM@t(8Ke)idWKhH@JM>evH+By+v(Kd2Z7i-^j z3@ucLm)*a7XHuOp963w~xH~U7B9;vD8_Ha5TtA-8MYPtOH-_-%ePKwqx(NFrcl8o) z`sv(YfF*!=3*9%n1&SUOfNiW)FvlUX;&iqg`11()P^#b2v)Z1zO|v&7TUV&?i~zil z>Bgs-itq*D39p#Y@aZ1)(fjcnDOrVE`I zU|$&ilQsSarvJ>raPJGl-+-O>>pNdx`}vyI-vfz=zrpl3ufK`E{2E8_{XK?Y_}?G+ z|Dz$5*G8tIOMTS&_YpM&7lrF*Nh&OB?*LD0oCvIvoq=X-m9Ras&db6wnkaZ}4|kEA z>G1c-A5QKXGJB2hghjA3neu*#hz9~5kFXU;wi_0tLO?vG%fqH(>}Ns8z*;6- z@fi1h(V*U3vc1zU6_cLFh-8Gg%;Jy)^lF~&$I}KISqPCkaRej7tqw0NFS%~_ID=+6 zvzhPWmUBCGQnHqNt93)XDQdkeZT#Yh=1YMjT(e+X)Q3xazXU*~@F~cgukz>7v8+sdkEf4&F#MhRkC@p@q{<>f< z^Vw!4o?%0tA6m2AEt7h>T%+3`s7e+2DrrH# z)@e6x($cUSogbDH4lylArBC z4}j>k_=aRSi65CsoIihq}x(CyT%%{rle+4ngD z*CDk%CQ6xx<6y$^-oni%Vm8su_r|xM zb=ID})+`DUJ(L>?Z!cS)F-*GReCE=^7Lgj0K5oRb>31^~+$#7G zm!Vpc$N0Kpo>f_Z!9Tj&gjD9Nf4{5x-%;KFcvScQ`H+4?#r`g3V;67Ztz2^k3aDT4 zEogK_^iRHSnIJ_9IN9h)g#}r z(|~kVK_rPtQ%m`$_-&or(Z-;{PuTvfgLtq%i3aexORt-Z`K~2xU-EI)m==9PMXjQD z-RrKoE2;lRc*Za1UT4<6t!%1=XojIT8E5&Zpn8pNlh&nc9y$hfvPF&$7b2bAXY0MD zqZ>oeQS`Dtb^9W;KeQoiEVumV^gP#`OD$8$1$L=rHOfi_wZx*7dBgrmybY?k9p9W4K?SpZBn@7f{CwdWLUx zqSWG=_*?5_k^%tBv}BUD?ej$;5K&N?yQV?$ka3Dfy|cVCXOj7&q-5l#VWy=H{EkU& z_;jfRp_nL2#~*}UH|YxlYZ~14Ot)NzVmF+wyjfr8!uv+mr!?*tJ$QtT<+;m*K5QzH zF5#7b7+o+>_Oialp9s2Xy5#vWx=~turnP+ThupQutWbYbdM={;Y|jrj*wk6kmLP&K zhs1jig6>C>mexvpvZ9yFTD@CC`0uX%z3aeR{{{5%+nYSp`yh`d*Lxv3OT4RE(w_BB zqtM_{72~{(h2UyKZ<`R38XPc4MXEcAikTja;*=WxW`SyVd;ed_8U353_=En}JQssc zn9h;k;H?(Z9mJ(e%&=8i^h8i5U*{Orku0lobK&S@=c5il+|*)IDq`9PIDDKQF0aUncW&CID;1UMemgjo&+#TzSc+21h>wsE;UE`3fZQ^8{}R;LdF~@@!JNo=?k&JOpJFRddaB* z>ih63KlDvN)yW1_M;ECD@FyEP8k^f=Tv9t0Q(t06=7F-+t|6tH_thKR&}DeIvuRC7 z;h`{YDt7;8sr#<^#*cozSi1XeQ6bs7TLP1PQmEO22N?UauRzXqD5twFM;hK0rx?=Cb9+zz~OA!&*9jIPk+WNSLof`+NM&op$ zMR#HrG}Xe9X?Ab&=DfS5_doKH6+TpM9bdntJUK=M@*pQ}YL6`Vuj;!IXT>Zqq5!UE zF|CA9E#6N|VLg~c`yh{3b+U#~~!)sPzDqb=3- zrGBw{NVt6x3{f-ZGv<1m{}1moKfVv2@ue(pg@Z97F*c0aJ3+Qqd9{15aeO9Svwgtq zY2?VmhbrGsW-ID;`1HKQo1=@m6BGffCL^{{W|GG^fG259l*$UR2=VirX*@Mmo|3HH zFEv8Szp7n`A+m%|J%ZzjaMGHPsEHUJ+$;vf5zRIZC001RrQ1p4XI9tQsIC<{HBz#K z)E^fRM#V@FJtri)m!Ow3)7+RiR*$=&?aik2-X#v0)-=`Jb}t}WbdPI{Y+(DNThc$3 z#q=I{gzEE?vuAn^UY&udAL&O6w#1I_hZT~~;}9H1N)C9y_Lbl_ov!OZEh{Im=Si=^|>^Q>*OaFrGObR7N?0y@#c;q5X{} z6|atYxdR5$Ba0b0J~RLNeQXmnV7||{+TZAX-ROko)W?L7jt#?g%PRID z!gk@(8-+QuSum;7sp30dk)!v9^2Rv>*x?|5`y-0sxrAkKv#@x##M~RSPZS+D3aNR+971mXb*C`DV|a`hHK? z@V+N|t4i2jZDSboTm5hAH5D?~$3BgP+g^sB_^DkW_WF0vzfWCixfr{w8OqT=s?(Hy zapJjg;&A8uT_YIkDK|k>jK3b}sQ~>68Z2w#*O~f327>)4Jr-C)Z#fm}Zm>I?B@-If z&$?3A*7G&90}UMtDt&m%=GqO9h{7ZXPvX>fbKG9NuV{Oh@K|h`Lq>2){)ND6LvLlX zr!#0*eA)^1tqNDuVRO2%Uxk50z3O^*QINS++KHdI2$s2Yi=z$g7dm1}Q%_@f)uF>6 z!&ARxLt@3-gc=pq9-@Ou6DSMHx}CV)0bn#`X&}%23quIf%kr=lI~r|-i*JKiX3!K` z;FE_l4bEeSwjSfBpShD1V*fO+z_mcxW1r807v&K>ue)r6K@Wg&HuM!C(b*~fC_crC z918+i^iJ;ds12@l!h+)r#>)fASSv9Z?9u=_FLX3dtj=HO%tGqhFkj`dzF=Ir&kGK# z*ey+O%#wGIc7dC-b6Bojs z<3x7nNrk40&qQ=wyS`BQz(SBfZpN{=lZ>2+(7E^TEv%8n<8PxFAxQ!acCf&S65#M} z{n|ODLd8!qzKe5xv<%4FD>)jI)zLwGhUeAY*^FB%9T?7HV0LTzTLtBB81v1@hJcG? zE-GzVN%pc|C$s6@%?{~3SVxPNeo;>Yv{4NGQO774F2~(R19C15)+=X#s|zY14zbq*m$%zA%kICp{_i%yE7*jQI7lId%Wrg*I33GcnXF!fmroB(f zVEAOw?6xAt0eM0$=Z;4<8YJ;JiTw0SfellIK?%fiIC{P$S~4hA2L%B>;dYy31obCv zqy$GbX5Mcg8{rED*|VzE!WSzN(-O84w!qc8wYIAtVp4Jtb)BJ;o6hL|w?)>@23LkY zY^0{Bq{5WxeYt(Cz1d`w7jIIoy1Cgtg^Qky(Iw1BNmV_I^3;y6PuuKsH%MxrhmJImF9E~_L_mt# zLV}v@lIJG1*~`KYeV+c{e%&#o-=k1T#-vZItod}xBC==;T|ziMStDM`z0v_KnX~#Y zY@c13m4@Uad&=YH2ZPmS)FNXFHlm82%v zW;~Kg%mkiu-+p5W;ny?qPqvUG;m~o!>UzASA;`bPDb*Dp9V zd^1A-qum(-Q4`+TR)6kFU|F~-<~$8vp>?ciY>yVe>Jji1C*f!dBSNOxCJ;y3q?cPQ zSksvd_Y9Q7^Brv@yHMn7gBYC>DH$Ew=+t61oM3Xdps=A1;5ke1uld#I74)IUWXydj zld1iivE(=1DvVP>sWQ(Ng#dT~Ln8^AL4f?cqyYp-5=(*rkMT2&-(o ztx|T~>;SaBF{M5lHB=wvt77lzXK>#`(;*LYj500UjOYcB7(aroIv`mvM9 zKDlybp~2dqo!*+(O?y_owS}YD=L$^N$kQ70c#5-Sv6MtSDqF322A_YePuA8i6j6C()9}~(tNdip?BzK zwW@eU>E)QT2YNiXF6%IIo(KrnY}lMlA?urb_c=HQq0c|`ZaBze7N-UV98Nfnu=O^Z zN@!f)?zx+!co#0{B_idWQ#_j2@XBDKyT~Wb^nUK3)l2(f>niRCJ2iIwim3O!mHd+s z&e+i$7?}K~-2%f_R96qO0$5?-ags_~Gc6q<#x;*6Ym8XlW=UUblbkFMniwq*=8mxtb%fI?wQPJL0a;rJ zlfxRapKK0}I{oY&a;HbEHyp-aIi{;6TnVqq_HwB9`K|&}j^~JrI5hKFH4PIA?_Khl zZcJ;iQNP_;4wE7~Mz`H*7c>j}Q*Paiy^(4Sp6;+U+#Q3(&A8_yJ)Do6+`%nZoTI8L zDrG7aYy?=@x6i!aB?R%zO&;wWiIL5X1008@r8zrE9J+*&6sgo3G!TJ+(~AIk=B=aR z+wz`*+GvIjLJ+S+yl}JF$Va`&IXAOvPA!1SRPsvL7lwjd{YLRW&hNA)^#yl*n5#I5 zN!pR}-f=iBzp<#|Fg1Ty-oI-Us?m3XCV?}ZTS0aGkU3$WA1ddbA03q9!uL0o7p;^# zAJuM%-k5zk7J4x3JA43LlV)1IQfw2_Ut^?TH<{vU-}|wE3Jt#%vVkefwBw&^TMQxA zt_4jDlD#V=Rk#z|yClIq-yYR@YM2h7LLeF07h~SzM_l9^{=Ig#Dc&O9k}eXa{MTqy z7*w(@R~$Y_8bKOl95_iYU68!9O0hm7>*8xgOs7*jW<|l1Ilen4)AmNOB-9ReR*Q+= zvV3iYQR{OKM-Mu;rbG7Acm9*!EhTg!q0>p3Dbvcnjru_A2lyG6u*f2*&wHWbZo}eH z8l7Y531|sAS6GPCT-sc$`Gx)Yy{FrW4tI^?yTls`k}8U4KXV^WAA9wr#@C1yGqAA~ z{}zr=n8sXXXEg2dZhxws!1$>F#>~;!@Jy$RB{^ACim$o@=|hKE z{wR>&CCv|hof7mAevLh{E^*Qu(TGr>>VPGS6O+Z1v+qf=Txm1*L=S*wfb2ni1_M7V#10@o29fSa@qS83k;FWH`TuJD+YJWXyR6I_I->!CQIT zr|YLZpXGO8h3d*WP@s>ivZKi+o~>@=I%*!SYp5{;m|!==9u3R0}M_0qV%TG2-E94rhLbzuO zc^}#1-7dsPlA=v&B^HBn>izrKc7uUULo9+-p05zG?e+XWwZ?eXD1o20V_69_ip^8P zF6Sd9AyK?20GO;{%noz-^>0gzTjNvYlt{@##*05ro(?io%;*vR*>5|4aJ6cd-g(;X zwVZDh!#CbNZ{QwvTXo^)9K?%98v)D!AB<*!1{LN2!+z04j}FzITcLVT-zQCb83$cS z2>Q)ERZ;Dh%WJ$*NLm^3v&SE?)Am5!_D*7bT3^h=jSUIFLnq0&|y_+l&f&f?qmNb*`q6;M>nvvMbz$Aw4X{K44?gME)A&$r@t&dZ#GWzM z!IYXN$m8a%AOW(Zw?K}IYQOnNKAb}IaoE@B97$=59Ft&m1a0Lw!D!fXg@7dmt-{b~ z-8J^IQ$NF%>1Xv4oCpMvCN@rNdJ>^Ecn?WZ)#^JQ8-%@?3zp1O;#AXnrqJ1+@*}PC4(Li zteWbH@&tE#{^2uvPQ!0S`3nP+edU_)@8e{-2g7~p=}FefxWeKAA{JVH(-U(a{L7Wh z(V6)&z6b6ZT_E_B$(!rb$?pd`KfIdasOF<=Ktf;gi9Y%DM#Y`lT%G~Tt?-P;!J4o38&9s(pkKx_y=-sQ5|An2W897xB9upGcv(U6 z8rC1(P3MTEdzRqc{5mOP|FR*RuhFJHJi44!!E1$O@&P^!uiRaD`h@|n?rJRX%m5iB zB_Cis@$7z;PmUscO9YrLEiMAW*0U;z@vYAjguEODuJPIB+)Nt51WaW{KEdo95#XP785$ z1dH2Sxer5~VqUEq?Q&)2Zr6Q_;IoAmYQ;~DqfPcMIHU^&gM8cwiHoidUeZFhi3&5J z+4Uj$7_+iT;a4LeYb~Zen=$l00LtJ~;{3HEjUCwUIWG0toar&QV%W_DUh7f^tKe#i zlP54APs-BfWPThOo(-yVyhj`SBkSTKPn>oqLZhNc+MDBSdX%8_>dcHTv)yO`lqvPK z3%3`r->}jvKCtmxw&o3>wKl5mGzx61;(%7a@Rb<}+O_Ef)!^ajKG z&9GhmNlo!udh(lyahXj$su*CjKCn*wtsYs}mOH{Ix^roFP>UBm&APCK)@xW}+J+@%t@J}&Z+SYn zo+^@sHg>VLEOL4{Vwo35Fp8suv&^^y2HVx~=Jov5L~&i3Eo7*A#(|q@HFY9!h&OH@ zcn_oQGV9!?IvjN|?W8yLK7X-%cLW(r*=|$Rreap)TSasS)pA+ew=Bsn zlm@X?sfw-7n2d@f#fj*~VM&ruD|+>MhZFSfWNmpR((L>4?+YhRFYqY%HH}zE{%SB) z<(4WK7F4LAx@svD!IkUe;)4-$QKn>-dbzX%^Q2(FDcu0QQ9Y9|LV5q@y%`L~cv&O; zmU@5?8O@4)ud(|%Xoku2Cf4%O(y9?_BkY6RQQ$okIc@mFQUeHNZoniog{`7Kx|*%& z_6gN;dx~(^%92ZMk>8aY?9#b)MM9 z;7=+6{Ko!RF`c?w9ZxxHw+%29h~DW?@`Cbw;>&HKJAmG>Fj|dQ$7oUhS5QRr_=n3s zGoNlOyqu^qUcX->Z8(=?V1FDf|0bXl^$gF z&|O=~7?G2#oGn=YD`mf=k;0x3|fo?Qj@ zjaa4E#3!6rNNWA^YTNg1@vpF%GSyIDyADMnBXdw!)&c8FVR_dQ)` zNuVK{m1vn|yE}CKHbUGCNX0Dd^mMXtu z*P8K_mS>vx#ybfy-O@L5-AX>|UM@Blg&3(!q{QM%y(KqP!f*9^&-PP9b0&DnJ z#YpO#_OJ1hK6!+NZLw;1x`ZdXVYtC}JLDhcFQyQtlriq9CX(B;B$qDo4qUaz5p%TX zmurvnFB$r6bgM^wD;#g|v=l6qU}N7X^UEEZyB=_#xCir|PUe-u=%o!T78Zam&1xd* znA$FZ(7SX-OZjA0>-T1XU+=(22bnaI_I>DwU>StkKfd-Gh~VTw+1x`?cfqsvR6ZXo!RJWs*taM?jl|7Q66 z(&Y(s+eBHp6GbF07MU>K6vit^OHUm~3DDdY>`ENlzpQa$WWsdC-60qZWZ*>``S=-d0a$qNHgQ@7mDvD)vh-#r%5TG^pYxs-x8I$ zTDK2El%TmBwx#2hg;a=?V(~iMHt5Apa-mIaURguk8aTqZ{_7kN3q9hdFulG3C+o^J zcG&JUig{QsRU8c26NgmMa2EB~aj{l4dm{_Dn!vPA1@<}h1GNV^x2ZRqw9BTVm8)u9 z$*i!do374W?TUtKGU;oQf!eqZN?#!@o0-K=paJ@iQ5A>bo4BV}ivBh=e>3hYX+N)S ze~rKxzfM2H@{j*uw7;snWXw7E51V@U6}+D?{+kcdZ`a(IQWLlP+8%$XGq6K8B1=F3J9 zhR(19O;y)aK}=lQCWCbr&Z08RGUHfMV}7JeU(FLc2m7uS=%ap^&7<8IPcQ8-mKaI=YS{mwap3HCY9dp5en1{nY80;UbV!;XG{dsOxy5CghIz7m2rTd7%qrznRdI4$P*YHC zm1BuHyG#i(uQ4B?!GE+=*_G>B?^gDLUZgv9PMDUl9h!1%Xs_RwT$_;9xo+-6QZ2Pa zC9yr?w1`BJ&~W0Nd7|k0Q2C;t2AI3B`KCCyR7@Ko99N?Lc0nMg)#7=Oq784{ecz3` zguyCU>y)^JiDLjytbOyFQ$wa-PO0?=c^WNO8{|OU^)ETEF}kSUjP;S3Kq8(g8Uk}% zUI+o|$`HbDlVu-HkdnF+j?4ELq_3qj9L0+K*tmAh0sHjcnm}D>kF@Xl)i-sXg%Zxw zs6=QKvve2eZpwX&{=68BA@RrTHKI6xoArOuX#UwcnGf+M5!bJyJ!%IzA)h8~lh4fG z7qK>%JOZ!1$I*jLKVcl9w7#KaUKRTlI;q^X`bSEWEiSeZtlm~Kg^)jG75K^k>(Qom zN3EGH_lZMOeziJJnFX9=xlu-xPiA73InN`w-4#&L51WpWp*Ye&mWx!s&92EU$>)sF zy9ha)`q8pp6JpepyOdw=(mB|CC;OsHI7BEg;Kj(Xjf{o_x#?+rnEjTTP;#ndvYr|J znApLJIregxU{1d5M9HX5c6BzoQi&IGF(7bJ9&MZo7@`NtbQVeBDL6+JOm7#!hmGR2 zhCO|qK2%P%C=E`VNp{KDqQ*1N*+^^#9D1g-R8g!8M!vww30yMhF3Z|oY7}E38`igY zx4ZOA%<%2s{J4{{M{3V}#b+~jm-v>F+vVQv18pvA5a-0*VcV zXt+r2@?)OxpD!kpECv?ex>q2;7h6nH$r75p0r6F>ejS&yg05RT{S!~Nlc@3A7V6i!ikdk;RH`%K`Zv#W>Dj)WP>W#Xv?(--IyXPRJ^RdJ;~j-*>idl^3bVO04j1~IuN6kmnp+G*ugCuBB*!cB z8mX_DZ&i8CPllV5D>f|Uyy+8Jj36VdXV^>J6m}?RF~nS$jja)5xIx3GUgyfg%i~X8 zJWbD85P?9MVK=o1Wo)xGU^9*a&15hU_sY_zqTdb#zl>s)`G_}6v%zwOoipVx&lb$kBnI_0x-Tf4Kq zc>C_3Poz{Utv#fodrAg4vnGZVJW3&MX-67eVoL3T$b>jc?~F0BKU(_`-?u~!s*ma; zo|3I4&O+%OMU3YAFD!&2^nv3C91hc&sSXPMuKQoejFjt4h{(ix-sMD&m11DxRBd*-#Wz?N)tuW1 zGa+M^Dgh~t3688f!y#w)2O7qw(lJBo+=^99Hsl;aktNw$F<||p3s$6UY9rim+cHi~ zaZISp>0+4U<+%MCs;fD>qk;GP-&m)6|0!mC(^>5O!$0R8|KV-_KAfcO-x9w&a`SGP zt6as;on>-xnln^N64bdxOMSc#DrYtDQqU&8@gcBfY@3MM9n5LtA=!UslX()JaG2s< zz*#b}4vgeFza}-$UcP~}X~h|LoS3@e0v^q^&=_rAO~4VwA=|rLHj^-TtemU(T|d-q zItwRtdM$clS9x!!En<90RNuuk;6X@Fu#}1PiF&GlWE~4fna^nS9K=Hkx0n+71qV{jCalm_Wn{}Ia~qcuc%6OtcHPOLc;&_#KNm4^Qvyl zd4|u4@JLv1;tOq%YU}o5oB#{Dh#trt;Dv*n3`jibyF%C6b=c{g(32LrHO--I;&ktf zR9Ll;DGMb`y`aru~_6C!m?AUn} z;^XdPbxw73Ox65#;YIK~v1i{@1gUP+lyaKSR;pb~)~@KSogb~OiK+BVE%YGr-|fP@ z>`ucRP3QN6PQlSgc|0(8at^}j{1u8jgsuKv9LWosc%K%MR&E^KTcUQ(BUgDJd3B$6U=I#WwWidrzzijWTtP;qSvB1 z{%x6}lO9V<9_&pU+1HMIvmk)jjoj>4ta3QK=^q*s_a-0>k^ZXbb$BABMKbzYQ|}i2 z40HoxjuW~vStH9joi+MMAarRZf53?K0<@)uDt9dj95WT59h}E?PgEIkeZE!pR#)p) zwalJP!GxFfDnBwiQ!pjy?a2!DDY>lP(%>kIo8#SyfZ|dRdxct(b@eX$3bI$lTid4h z+WYjIW}Go?I}YPOb4&9!tBzE9!jcNe>H6D%c|*dyAx*h=-v>qV=l=OLNA1VYFpnJ3 zg{5F`{h0}I75lOL%rRj>=c6gC`oxeRZ ztEnByL*5X@ved3a7qBKXqwgE1GMk)@PO;i?L)_cJheE7)W%BL`AtWD2Hge%Ef4fN% za5FUwcd#N2OULST5Rdd+O(=Fxl=l)dNh%8A52D7C9_Zlv>vWKhA&v^|sIlmtsfHHk z50O)T8Ip~korZJ#cOIOte3+PN`SV;U$?PRs-Fm7{(+b-*Ge6Vd7dZyeq}RZX-kFSZ z#qmA#OQ{l~v~Q+2mI75iBQ%?}dx} zV?g!IKW_9G&>#Pw*UXt-8B(coYfROs`l3jG|6KK8ncyHLp;Ywau8v6qbWeHj!O%FE zQ&!-*?x4*3c}RoQk%$P%cr{AT@D`fqFy#Bg+ zx3cuM|R$VULV0UyhKG>&(BtLU;hC(>EHC#z-7rr*|Dg{|#UZud5a8gEwjFe(} zdV9;_(z&6Zb95{%ZQiU|3`vHWg~)$Oef(x^G^x3Zmc`p;-MT)SpBU^zdNn$<#R4{w ztD5YUDU}(mLTktQs8mDj`}z`ic~$-?b>V?#|92UWI7wtS#kb6{{%zUKZ$V?%YMzW) zih0oZOw`gKFH(NO}`}?7%JG_%_CKP!SD*BY-)54a-mQ2C7YL z6Jt3UUl>@(OuzNKFEyH?b)8Guk8qRs=DtY?w(gxvyqnAUu}PdIqWQDx#VA~dR(*Jz{UfervY&8ZByX)a>G;=5%%2;3om*PmS%Eo^Y~LCgMF<20u@TN*$Fb0 z1Cz0PouhfGrfsL5=)Fe1e>C=cCAR;)eZ~Ft>SoalxNrQ@cpT387NoL*JY;d`%- z50G*uV*}lr_>H5su^=WU0gCzY9^!lqUy?F)K^9!_ZEFxiI+sJvLWVb`+DL|-74&9P z0;U%v*5&qAN}#_G*&>{+@Ji0JGsi*>O3}&IF$%SieN0pS^sEB7ji;a*B$28h~Dg&3pIGhu$dh{mVc%x#)flz8UQWQs?hS@V;V2{ctQu*3#X}#_# zZ;i1A2$uT!q|}hNh1(saK9rd)=6gB@6SpFuiJSFzy32}we?x_sK=b0mXxtILE5qCo z^PAU;6``7PFKT$EWVd4Qd#}mYcw~aoZw$M-EIfVv&g#Lj5((&*?x9XlGYX1=98(Cu z1}Lq(TqB+)Vsmsc;IjJieyI;pFGY#h$c~Vx8t7jxSUKM7v_yo^1NHzEEk<6JZPe_V zP{l|%+dGp|VGKU(T{P22-ohCw=h#-3l=cYYrUfLFS0JpTS1>&kOboUiG?Guxx|Dvm zJ9X_k`9YBSX1(%}EzZ>@X(>iZaJ2Yb)O@J|Bq|>$-q#5ym_-@pV@2HvNe(O}Eg@Q? z5#uVa@bz6m!&dh3dN|*TPQYk`Q9P}HEZne`x}av+U~o1l3w7sQ!m*C~*;i5(c zg$FOmydGb);Rg{n0kL}|fW;w%B_*ZX+Ob%dekg@04U^~JP)nX`P6)DD&%vb^nV@UZ zf9>vHiVjpve|ngg(C8(Ami$c&AHW;{TM1^;)mPZ?ylv%t@r*723 zWq&l-Nu|17PxYWcg$m<3oYVS;6LSuZ>L8Ln82lp(!*bSsiz64NM}eZvr}1-iqU5UG zjk>HYNK?!@JP27H-r*>EGPH$|On`|1#=B$WB@(UkD&(sMu0q~glhq#@?u$F^!=)Rp zQGr|h%bK1@Z{ENH8u~}bIo{oU+{vO{wP-F5Tw&f)H?6d>dQY8t%{Oyx`+9hi)5KAN zb(!(B{Ny2`jeJe$=)66>Q1&L4?DrsUa`Zf8*s=E|&AATzI$7Im?mMC_L3wRe`fvC^ zeO!IJ3g1AY4$rLIQDpL<$pYv1t-GeXxb1uHb-{uybXIg7iG-m)(YRv!6QpI%%^#Zv z0aVHRDZe*BI57o=PqL!~JxwiA${#f5UF2sJ6TPiANxHgc+W$E)`&;Vv;qd$a;SHPB z6NYcrM}zh6P+ew7)|WEz)+D8sbFt5w1J0Bw;aO*Ml!~E}`{VqF7wxB#V^%%JUMtF5 zwIszu0{Q4i3|OY0p02O!1%Xu{(aYjVWDuc*-j57oHMdAUb;zssmC)tdX;&Y7=UnET zmXF(rdnXWR#OaD9>2;4UBAj4O`U3VNLFQbMzwavbT#XT-7*sB%Kuxt>Q@c(;g`bfT zz7)g7EF+@7&h?GX=wsov9~Xl20rW#Rh-%3h;2dkNI%1IR7@2E~pWOE^<=1D$i}vQ` z7OUnKugtneMV+5puROQm%V4jxc8S`Gvo64PE*o;if}7%D30zdNc^{fTFE3B@@TZ@D zgTG>%LcC&`LOp+H{^XC}IMSZIY5xlt2OX)}9{Nv{g(KZlp#K8LJ9Kc=9RG&-|9aec zsbf~4^VcToRLAU3+IDcfPol~|5M9f18(p^@gtJ{y=?7VPty>Q@=xw%)=9$|fw0tn{*Kec#?Rg&$p#b61?#Ioor!w4_m z6-$~zz3L3~^_2M-#0zvS3$7$2kGHZipZAh4T$_=;dNi&gH5nweaGII+#Cs<=qfhP= z_9IF+R5D&P6db`DnA* z-LbMnL%Uw0qX9c*`f*bjTD25M^u{}R^>mjpCEUT`8t6@bIpscc!$&XH)Skp#ITZ-Y zXnQ4ftY^^RvG7zc>6BC3O(~3f&*7>vJI}v`{Rl#|7&#~?O0d< zh71la=c!mcdeu1cYO<2k_$H0)Spg}Dpj}(yF$Sr3mqMzSAcQF*!cvUR22*AvA?#_e z$uV+g@p2t=A6j~el@J{rb75}ryzI^Z#BBqd0XgCeatiks47Sh}uuAFTswj2foNPgQ z+s5gh>FTN*uV0N`b@Ah>n?NdY1)O022y9oKVzf*DbX({;{0^n=R^8Q3ES@qn?OXwV zoXj7k`yhEJSF&)>{VnwA#0IzllQQV(lJEgSe3%aGW z6P&k0wEkq~qGMI3^f-cZ>An?n8{U1oV5s`+*-t-{AH^Watx?FDU!E4fee!c`ukz#h zx6z8dZWXXM6oI$hcXZ@?B;Qa50Yca5jWxU;+(8_(mA*=yL_P5{ize%60@liFny3r1 z^i=03lyl)y+Fy|-OVxWomG$os66KK1>O)ie4|IsL=xt z)8+YW`mWRR zKJ>u`$aZh^YNuRfAcG)BCl0Izn~?$#NbmSD(uHS$OXdJPI$UA`36Q_;ym*;FcaTN& zuF`|zl7r$FK!pEdB8NbVDDT}0x=~1=yanU*RJghXfp600sFl-nhhHU3F8pZ-cGn0PwT#HD)<>`c3(}+7%>$~b;dOjCMvU`CW@0YR$Be#9PNDa zg!N`J=@3kwgU~4;=^$>qK|X z3fNEii@7&rY82dLIHCkQJ66**GLjZ1VtIR)+?~rDY9|QYt9TvUHk8RHMy#_^Wu`a7 z5Cjfr30n5t^qXTeac^-tx@E5>TY0n0$TEPbP)>?|N(}wX7gkG3hL9Kt0TBYtHDHwd z*R}f;7d#asAP`$*+n^hS-puR{QW`WQs?%AgX9Tz9A!~b2X?|>oJ9-<;p`L8yV}Pw) zBQk+R7pNAJgGNL_<*7uKKz?F=7^@MW6kr9bcIE2Yjpe`HAevPoCq{zE>z2lq8Y@tu zl~5MRgv2GN9ov#6PE>wLx#4)Ix~RWbcr~+YTjj!jv;vhP$9mJLJT**RBj97A=@R;n z6Z8*+Q%TYaprh>|o6v0LsiFF2HM3Av36Dy|OnpD55#~CpwDFQwrJ-Ji-2>@5YSOrz zJfdVDJNX>viz8*11tNG|g2*#b+5AVQJzIs{{S++zfJ5Bt2jC&}dL9cIuK)@-Wsj04 zx`V8~FhqMw?wmJbzPG{%x0hB_8cFUg#W?sJ^P@sJ6lbW>7kL;0+`eYk(foiEomd2` z5WoS!t)r8c$zFc%FK*VVV5%&R!pGP3F%H(7wu8kgw+n;V3&oMO5Zja(jZx>qIln;e zJ^-#~_K9}9cc|W}jOc_>0>^`=9m9aYR12>L-=5qtv4t&A((Oebu`yxokPSRG<`7)n{&*bBJWv%KIcNlJG{PLcGf#(W;+pb5mz>l)M2;T0W zIufHQ-Z+5~m@UBotdJob%DiP>P&tw^M8-2wUe>=PS^`#et-^A@x2i}~us))z;6Gb# zqOU})N-{kdx}bM9N3Hd7M_2Vh+Dx~i>EI-%x5cWKpQ5C&;di5?$Cl2~_C5-G@Q4%e z_$B^_N5GeS*Ykicg_HAu$wTyS8Ng(~|3Th+KsA|l`@=YnIu=AkRJwHOf)weaQY17f zA&>+Z=`B?00*(q&gOr30QbI`xNJ$`6rFWzxK58$Zy@p>a$_sn-1=07f3t9PE#9jWd#FEq*SRDO{= zzo;!X>>qVNLq|!-c(vi^wxOlHC&yGrVC7xel=6yvaS0?Exw>v|OrG)eO@y!d2DHs> zh1JI(CR^)r6afZ7jiG0zPI6zpC;hxn#A-w&yuG#_idb*{6sph%p6rdea;o$^%MlN-fVthS~iK~>O$iLmOf z&3ZPsN)GF5)&k^y3iZ{B&VT&yDJkl>%eOlrOb*K*7PYc1ZWj0?VM(eEUfGw!b#ILX zN#Jy&^Q2*9@jU0@F!+}!>KiDzxa0)2n^Rjl%(iweqMoJMonG+4yKu!ku>A)}4Z`iE zh2eTw^j3aZ5`QZAy|qNBysb&EW3Na zmJkzXvxk?6(O!>xCb}HnfP(%o$AYqOMFfl@;$ zz`wX<_$SM-f34MFO_fdc_2N3M?;Ae`o%u?*T}nim6#NAG!t8z7z?AuyMMe^2OR2e4#2(nE(PIAc6Q`_B zA#gROZx7TXq&U>nKX-%l`1*X_z(JI-w0Z1@d4{7;f#n^B4x|wC&#+~G0H=Iw2_+&T zBa1TyH5{inq%JKcd6qLw`K?C-~83%K@QK;n47w-D*tvh*4~ zbM{)C*mTokce=&o+v1B=y+n=#2Nefe$7?O6SP}F}!Q(`}Ca+|_E^H&vu^6q>giyv$ z-6+iyKO9b7vWEIJM~}(Ol2#R6n|OR}+LTtO<%3#*4HWPOzAy6m+*fr;@MPrfih9w? z!HRALR?wn+!LFW}kI7iETFpm$u~4b-rHKAQx6y9bCo7-y{1*=GfsIC)ETP^Sjfth3 z1fM?9O=3>I!+wFhaN+PILSSNLx;9_Q=F2kz{rwQ|7UUR`qk>b zO1JCC_*kI|Y%sQdDoT3IkjDNIw-s0)Xft3NoF!zN2@ktln8&DulXR z(^~h&S$H~_vs73}vPy}LJ4!+vhC7qO(O4+)Wemd*X-#YyDDZjQ+6My!Q7AA|>#i4? zvj#_+n*?KBImvJ(Hy~x($ItIdR5B=>rKifklVb^AadIpybIstOq}ywO5RdTu%PO0{WVwg>q}}-QUgrn$58%A;&Pr&} zi8*T#)T#RbxaF7H4#R6!wPlRBMmzSVtGqZ4+kq4mBIBpKTt;1>uw|hA%Dtt0^W*{P z2)B52zAKKt1H@~G0qP;q8EF2D9KM}eWt$blQ0d7~@64cf!*)?sfgzS4l^vvHHxo1h zQPe_eX=;J1ROjwxNYiSA+ls25a^ts*vgIQ!43g{-72M&`-Hz2yf_7ArLGR00XBqW0 zYU+V*VeI&YC0bw)KZ+h~K>f(fOXZ;udbjd^ub_xPnTWN#NDCL(dC&Q<*w(5mCHx)A zTY1RdN?=PLjeU@WlLx_~nDJ%&52;&plLb}ZrOCGMw7-zgDe1WKjY{!OhbZ;|LHpCp zZCpBGkAO(}Ny0(}5>Y{hVrZ&}cG*NNfza%AhQsV8_CeE-LOI+Y znM`~D7bK1kFbeQmHl@9Dstl7{XbvYX3M@b5HFlLYnwkuAEOl))!SYrYsMhebGnW9G z%W%L?oY1@(+kNx1Yo`}K!*1{US2=7FJB@mZSNdKGTK2og@2-rF_z5=oT47CWkXQC+ znunXGUG^|-#YNGx#)3jod|he3P=)X=*t9Vk<=u%;sBQKUSOlW&S5zyWL{BZ!>WsLC zKttCu(0!C-3oynmgu+tu90z3Tg_+bkv}O-$8w!azipAMhl(Ya!tqcr1+i8bJ!7ZVI`tX;? zsvR*}h&{}F6;z_qu4|xuJ`-usx?y@IUX#3Y4E9GYT?~?CP?f2qHl}lPc+T|@Mqm6= z*!Z)B(7|t0uY&GOV)bD|yg|*yxNFxT*RVkT!S(Z6k-sqted38Uzk6FAR`MWgM$0&- z@m;-?;G2mibx*r8f&PBZx`LY+09FtU=|14Rl4VGAl({h~ll&*9rcEBVp%qe3Vw(fx zw(g#jY*Mu~Z(RG#O1tBk$|=EEBFST=V_r?X@7cWcx*NjVgyJMpI@xW!<=oWr!rVMm zGLthRIKupH|0LF4Z;|!})m63U|Co5+U0j;IT(`S7z9`+lUV4XVxok1a6qNSsp`+Ci z-^6B3(CHmYcIZ}>z(TWx-@OeQ@_Ycz>^G{eSsLOByo>&-a)H(`80+QJ?od7^}>DwTu|kG4*d$stS3(?G#nOd<9R%Nj~ADB|5d3 zVnK4V!5)vjXvYTyxE6Sy;UX`)AQoFPO)3_KFt$vn1Cd;AD@+$@-4GLj!kU`DeQG5{ z#z`vK<=mg+OvG@~N(Y{NqY_%ekk|YP1XQh-f1xN_e(kv<&yJq6m~AJz&xCfLgOT^V z$4mrP^+<|qhtNzRO7-28t_Uj)>J=xerp;z-!)Nyd$b$H41xqdTI4dW`jXneo1RKa5 zbtvV~PHsW`)%|Ie*>{LROQF>Dj-KsZyl~@Ud&QoWpjoT3&T7MhB~$T{EEQNQ@=OK; z6!>DIOCCd$a8n1%;5bu*vFLq8ZFiY~+LfWRR0{$34Ag0=;O+NzmG|w+)>;z0KY4{} zmf4EQG%|WKI-6||wsJQTz@^}|mPK-l-sgGDY>HjJD8#&|%R)dX3;1%y&a2mmg*?`p zJSS~R*TZ%Yueo|uk!hqGXKgCB?*5fYG&gv=i)oN(Y?< zo#sTHj_FhRhUaj|{sHt`52 z)Qoj{RPms%kXW{K?1<9T5eFbDzERZ|8r8m4oI1b5V}78s%|?Bc)6{(@u66b7>Cpc1 z`rG~So$jPP3ex*lz?Q=Nh=1Mi*1>wzL7_Wa&E}yT^XcZ{3I#txB(7}#;BbBAbhOGZ z>FWE_l$t)DOS=P|tmk(lg16^o4n#!VXyiU`q-FcleWOzE@TYEbO`fL2R7{M~Hc`F~ z_kWGNZaF6)(o;)yB-<%D_S;;6dXjY9=b^a*#~H{al6NS7INOrM1FO>;;Cnvg-H5fvgU4fMEBYvW zdC0+@+-x$IpZsDC@nKMKjVVi7NUY#uv{6Kl;jCX;NxKy zr*aEr-yZD@lN|B24-==-M^>%23MjWx!y(ha>I-A37Hi#ZOu72yi^8+q^^?iFaZlef z#MwWHe&HG>R7KvKS(HcEKWiNNd=A&0Hu1M3>AN@omj8=6gv|REf1I>b>Ftp?%Bk|n z3iRHQAwzhZ&d7j4j|;UN(K`~C3@EUP&KdW{xcSpO+p!eVA#TO$`WR=CU;Nfft?|(qXondHcm;f8n6|&GH9; zRDwqm?1w;h;tEG1QSwjo7NLB81y<`ka1tO0O`zWCOG6jtYfX zSnPFh^oTV&Cosw(%w6YAOy0_<$f`0>P*4*t510X5Ilks(KEi{*>A-Z|nL8W$&d9O7 zS7gM3w?8i@@0Z=8Wmc*aSxyO`{gCq0F+{0WX^FCm#@>Ky6hkG}y0${1w$4HfQ9-7K zd}VLe-ZNG;ZyxtgH>N<8wP?lh<74huju`sRsE6GODC(?;c-hl}nK8(~8>n&`Gg*#f z#)6N67n-Kgpk2Czk`k-!BM*K}H+ji+Yn#Z)O?tb2|4NqSP~^QNP_)-3X(`LUhuhUC z-E37|bU2>s;S|^F?*_+TUtYX7u*%$sf7278+VhGSQtaZV+{9}>;2|_{ft+2@KB7AG z^v=bvQ&arKnMFf@9O0}@hm{2Y-8c>~{#NqSjo~OU2j5a(-+gIaI##Yc`rvmxjEY!e863fEX=dYVF?5cF z%l@}hYz+GoEt8`nf{t`5LqLjgq>rfYd_>+10_~^vjVeegzltWidRabmSA^5-y}C>k zH=kwOrufb-3qA*CM_B%#GLI4UX1uyd$Xg~wH~5d!IfA$~UUeGYxJZIME;8wX+?&1J z>|Uttc(9@#NIrIGbahmX{bUtBy~Su|Il$r{x)Hb9#iL|B=nA!g=OqXMHMxPhdWE;I zDe|<=@n3*<%1rW6Z*@ubNoYc>!k*f>16^}-X!*f5SR(dSKzX3pi{g!OC^VjualsXG z=My;Q7#F3(Ov3+c)-vk`WE~@+r9&er+XwmpZSjh@zAAWj=N581&#*Tud*uzxW#v&} z-)dHKzV2Y0;IbOv_ERyLsx#a81wo13IeQ-SOzjId1xhR%-!;;KW?QTT#C6N_FvZO3 znmv@vCd!hTLJ71*&U`)ru^v#^nxZ4!iEK5R;NR! ziDI~ysjGiS81{^A=9eE&gukJ%eH2iN{AhDMa72i)GHD8#be65+lvHG8=Bn13r3!>< zgo@*cE>q36Az~?6c^#hpxPYxct$M1uZPDOMG2?D}XuQEP?i&>sAUY{a z8jc@sZ=Mu-rv7q6ihsvGsSUm@w%jVrNr{RD!tmrI*4BZ!dsbfhS)#dk8wYUGdzScieq@7ci1oW(lk2O(rM9j`ojSp%`@%KVP6Sh7 zWNYfhUDU!WPjKl_cDe{Qw^L}}D1|+cT}lbxHey>LnaF11rvUSR?c?1m9OWK>^~Uz) z8=DL~L`p2nOSEh9IO2;QJ8({fW+URN%K3Iu9Ao?D9&D?`dwoO;He-FnsBafaM_*f_i88yUHul6pLGx__!YDc{`mD(z$+ zzt2{MKT(mL@duHc*Q@*$71>_-%N_@`&#s=PYRMi`j!fB90{(_OO!GeU^}ja7UrGL! zy8GNR0fwLVY+9FW7hi%1$Gmvdz}KeA8kGvv0}JPlnn>>SJR7a3-DhpMavRg^hzl*w z5226eF63zBoJ4RYN~!F^4T;6d91?B$QE>agHD;nJ2cP>FE1~6~Dh2^LiHY%!e7gnaZdU#zl!4Rj6wl>FF^I;P7!N%(`Q#<(R&HRh@wr@qEKt6 zLb)yX*hQV>`DpTs7Ni5r71_`dUR)zq0BB9n2)p7{?l(PV$$*ilW0Kzo;zQT$70Alxudq3ZAC`yCWPoBCMWF+`ER+>7{ZWh z{1eO1mWV0xA%&(@R1A}Jzy4M0|5th18MA?r@5*soXxxWbehsPs+N4DAeaBGREzh4+BX3^k%1;aIls{={!_HeUakEe)g`kKQ|Mh2WgoRe z3>ovKw(0f8_Z;Q_^+Er${K157Tu2jgf?2^P7iN6NQSMBAj*808qu8E!e5H-uut)`S z-4bab@b0h|{3M1SOU%=(hsWJqqG##nyXC#c&kAcG-XBX`$M!qhucp&E$|tTQqILj| zOca|fn+ZuCeX?w8^4Ov5OY}*;qh1$*$1h>9kJHsPEB!r?Cz@%7a*TwFxR#_=B&1O> z-DyFatX{PCiD{!80V4=Exa!{D;Wa1~;t$_v@(r2lamUgTUQ$Sw#)TtoyJ)h=)`1g@ z?h)WkK}D8NkaSA?Ly+_@&*L{<%4DTW=#CicFT;h@-5U#VK-;FN-q>t>-3zJ2N>YFT zqPx)vSVpJE6robM0yOyz{)pb!wpFuwrRYV0&o~IT<}`UParF7pdz8aI$}ws|=FYRN zyVt9h4=>M-dKy`oaU(Nn3F;nOSZ&Exh(!{GN}fjEXLCtsAoa>NS|BC1^|$jDAF}?l zssFpbf2-_XQ&BN|qxuu?GCN*x3;8utrd)gZYnbo*)hEH09Z+6xYyLUKby1(@x&IJxc`Ix>-_&7i8s~7zfsWl{A+fX8BoWejW7xo3-M%&j zI=s91@h;`yCT;KgIl{s8{RH~(Z{LNA>Tg$BDys8k$=_2}Uap@|I^(wwNILN)OT>Ep zU)<;CzJTC6;0LR62Cu&$#3Y8<9TUO|%?%DW?L8xIf_jch#2kFEj!$0nbF0Jip4mnB zB1rPknSsjp@dZGu4u>8m54C4ej8Eu*8KK{(Bp=quJgQ$M#e#1K_NbxsV|&_o;Smd1 z0h8>2U~7vcp2vAIAnYKFD@XTXn9_>deY;6Fpb#DQuA4#m9-!_;Ll4Gnld)VqKac~? zPXWLOHq7MJejw{)_lOU$0;_2XG@B;ysL?burj=ip34Jq&X_`MGJysx^!iw2L&P0r) zO5IKzXNq3>x%$_3^R2syQMOU~_PJyBHNBG=0nvg!m~w_F8Xo`W2U7M=ZZ4+TIik-!`ME4njYG3Cg`sg*I%pZ4Np2UTlCD6Wl`;Y zD1H>_f*a6o8V@=n^d zPHb0|O&BRGZj?;6XP6!L@!xYmJIyp?y64WAHU(%Tg@zhzmx`m~@7oL;f{s0~X8ey1qz$2;`iw%VBN#PFrGSZHrK*ONJjer_mf zcwza0gUe)VR&7>afxDiI5G6_^XeCxT_EYPug{l%&Lw?%Z=* zKfQDAvjQ{Q-s$1`nVj>r_4(^G$Nnc2QWn-n7bzbD4P3kvWfJXgw};+v+WaW@on`y^ zPqqBB@TZ9@u<*TQd;Zs7sTg@n3;QTQuzO>mI)w<=o|=e*OMDIUY=ct=+Pued^OJHp zZ=AkS$x=M%eWxk20~>(Te1+zC5P2MVWYnDV)!%crCjQjai`m5P$Zaz1^ywmR(Dr+Q zF1B5T^AnJ7RP9qYqwE8(!=_qB2BT2;utr=%8DCHqyD$#~3PfE`w*@TLR3ZR6`s2pL z%{c4}6rXusWz)>Xi{rmmV&cV*`F1^i0|)y?-18JPKQMLn$O1^&0b@Gtaq`V&yl@1`P4v zzGv1<9d4{27}+peV#_%<;z~nse~34S8$70LGP(t+Bt@_ORfGPsY5(Kuzgull3xTRNEdy{aYdGzqsHAiv$?Gv?aEL{@fihCCax=z?&QL7QwpzP`EZmY#E%qM`3 z{90ztV%OynG*qaL^VEHC6`p8i1dFV5x{K>98~X6xTwz6}koqA97cWELhvItA@@qYC z&0M#kr&?8HU5al`p&j3r7=|W~hnjh*FIFg`jV$r?7iZnw`|Cex*FYIV$7Ra1GT8)ILsud-x?4&vk+AGwukIcXOqf#d@dpwtTnSqa-zk-{lnO zrWbFAfd?FLwS4XFIgt&zHUuA5Q`-?h%BtHN8)g#5# z(Q# z{5r&q>At!4eanP8Vs&xs67(Eb6#=&}93!h%jkHNp0sF7@30ZVN`ai@@^R zt1X3UiW0s+FR6pCtlxFg#9uuB&8v03vw4^Rgdd^=vGaW=o%?u?ibmjvN68UC=&Y7Y zh`+eSkHo<+j2sF#-c2zO;o)FXd~#9m{?Tjl`itp6CIb(6K0kSWP}{7JD#-g<@SX zGxdanLF?0WB9I|PHjKT>V1e*pyPb#+HSWD8b-&LgJ)Ih>#WU(+>qhJ96NN;AZLjEU zE)oFbQJO{LF8r?Pvqj5mXEcU5!d!YobMhcoEL-d?w3R1n%`LgH#PwPFt4AX*9UTtk z!VxYT(mchD+SdWwE~O4*FLk@fJ^5j`gw}j(dT14Ua?zptg?)G7KBp4uXA@Q4aeKVI zyoT;&iJ;yBfe0aCN$imE6k-ZXK?bd$fb3P&@E^c`r+s@yS8Y7($LGkj^Yq2cr@BW@La}CX?RKT#8(wPTZ5Vrv@ZbD?tG)t zHKrjf_T@vI)Ermu%GYVy`J4&PT`>^UBUYXl0!DJHl^FW7J-l^ORLn3WUz?jR4p%Z5 zxT(!8sGvr8<>$K^1Xz3sibrXex`Eycu+(uyp>tNEXlYwdX({^$>RZqscIfwG{{L@^ zNg?ZSW7T`8PfDHH$%p!5rl0w&Te9k}hU>J%xEAM+C}*4*y7zl&%; zZ{^E4kLOh&B-S!n5vrLITCy%zrE4 zlE|rL;ZE6^EE0dN_M)iRh=D12W*mOuv`So?nrtrjdHcB7dCy(=i(TWVYoSY1cT0^$ zo);8!>#LXMU3n2EmMt0EjNdA#%IixtV^W(nQ8UX@+IYHQ{~Kd>>D<$(rIcRHVVa&6 z59s{eW_E1La*Ob8B{2*pQfyuz7_4bDC&4(^cu%21&0p+pG(y#-fixOUm*e5t{%GWF zSsTtC>Zs!J^_i}u#!>G6K3CM2(JP>c6S3Ib-9#H&Qz_TIcEQ43M9@xp(5S>+`TJJe z2`L^h5qgEemGC&h>5p9%IH&V@Bdu9RcPv*)MuMxiZeKJnO0f2QW!KP{#uiCM{qE@x zN9&K2&)@2v-tys(#uFO2QTFC?NCE9=h|D$ohZ7?gQ)P&cTo5$l!?JKX@M%N=0uVz% zWX1CPebo=LwQs+*q0UA3g_9@9#$;hO$Z#Z*k~nFG+iYbbN16}LxG@LMq4_zI`Tt0r z30QFZlhwMT-?u#BmD|VKv!mVxw zCC##cM@;F(r-gvPSMGT|Zohgxs0!VQ*#_Z2Zv#S+tK?d{#$}R&aiy!b!!W_oR*;Od z@~lwHH!OOXCb-?nnZi}vwy(xHGB4jY3#7IO_uGRb>~(0db{rD9Y0oJ6QWU}f4&Gj> zbMw+aYPA27diiD}_0Z04eAd*`VS@1|Dyl8~4@?iPyMr|+CH?}AyLk1ke;miX_J01O z8~j-I%lAv2(9HMi;MZ%EuXG=OztTlff4>a2{J6>=O8;N65=RQyH1-)k|K_mk(lW;v zH0CL78+6wxF8&k<^$67y&CS9#k+FIpgOnY|P)*?Rf-}6wv&8 zByC~gq(52UrgLZcI7b>-&E%S%XI3^`QR7p9NNydie}S*OTN(A6m^ajofqTVIFmnok z6e61USOrN#_cnH><7ZU7@10u{)vYQ2ZVX18o2c6o=+*8tA(~L1{jilU5mSUJU-89^ zWyE&eFXpa@)kPRX;JstUv;a~p8Xap8g0cq~RF;uqH`8o3hM4Fq%?B3nYZAgY9m-Vh zx#-7Y>P_ApyLh2ZSGb`SQ3SwgBFG&$HFmC_hJqI6vuSY31cSd&_`%Y<6r#0RnrQ;;t%)TUssA!mabxT7vW7BZAVMYjQl3Fl?ZQ_`vHy~J9R>ABM)TFwnylIunQ(9qzq_3j!;Ozd>u6@!aS2f} z?3r9^XCLAF5fVTY{}Xh|V!_09Z&Um|$5l5a7*GF+8<$h!GKDAQxbWAOJ3{o{j>=Zz zkA&-i_xo(7h?Jlx0#LUy51>!#NU}DzX)r2RubH@0?kt3@+DTZ_uxrw=vOx(yu}ipO z44&e_puCdpa=uYf@ZD%5JX$BU`>YOnZr! zy4-}(GM*pARusoBOJJa?blPKxyT`vwqIyR`9h-iS?3H&J;t$=s=tG95_c6+iVdndn z$iaPWr45#zvTr=AfgEy@#@=L(T+Lf39>jF)eA&?k<{OoTzIOL%TL>LV3XqZ#;VSAK zEgs+&1x;2eRD+H&R#oR4NO&o`@@I%t89`hsXOVDr8>}Pps5gwFaQo^RHv1v~PL!V^ zE+X8x&yuu(@kEO~Ssj~pi%PD;kFBkBRFa*Xdrz~Kq^8wAJxP;JAO&}qQ*huI-9b%iqa=G z@AA}8_RU~>n6b+SrqYKN6lP>S$ZZe|_Z%T9a5qRYzj(A3iRTg&vQbP49raHzC z*hn>>{rJ=A+RMu63Sg=^LnEHTA0rBDi(wB>1n~C(y#<2f@4tz=dDQ=on-Vpi9fGw7 zkg`iHeV8zhlo+JsFc+(hV4JsN6@~R&4te^gLu{*0V%GSp+_B2ij7`r5l((G9Rv zlOx4Am)f57C5*^(l-OQOH=LV!UT~{;#;w3$cvxsO^D#pB;T0U@uE#V`XknG7n7@;= zNj=tYmpwZf?6sz~HeTbkcH-yK&6c*ld%*9NHl&mv@rU5$mpt*t=}(zuUP`ipkE55 zqM(ye2w$bqnPkNlZ5Z#PB4yz-lbn#%Bdn4WXu$FtK`3@Ds-;ZDg6NcyXZy}2cB@ZI z=vV1>FXE|DU5m5Q*Ac5PR6^*wKrZ!xJZ>kBk!>@|cDbbxv zjGnGTagR%+EYwRarK-i_lib2Iv)!(>Hs`r$vgm0_xkR4~C&ud%#LICK%^6ZeK6Dju z?Abp2rJkte(0-%;`SrGP6bb04NBoc|daiuL5`coj3qXiXoR+3OdJ)JI^z%Rho?5Y9 zOpdG|Ew<4lZPl`V=NaDnLuQ8Tqf;bs4l7XSMa1+;(_C;Y1=^5Do{XR<>(NKsi|R#I zpTG_q>*c+InlJ(VfI90wOWQvE!*wT)3$F^UkV5&X>;-75LgDr9XX&R)UYMsk*r@(s_98el{uRRIy-GrEfD9vhS2VC>cV!PjAllF zcs>a=GaIZ42)Jh%DAI?n1NL>3O{7*q`}$;g*7%W2eVbJnB6Hko zA=uo^)#yzei4$vQSXk0D)#vH6vvnuPs^%U$5Rs|6UdqZK-tkqFJF#aAVLP=0ivin5 z{4%^nQPsY(mUe{dVwHUk&XMjhl5|(ZXon|tRK9B&ZXqSoJY`7uPhPPpXHH?bT|qfP zc`MfBTx0><5$z2S;54?W5wZp3L;yC+3}UfTYgnmR4_Cb(jK3d?+%7rDt9BF^$)nqU zAK@h%e_4aeEM+Rpc+MH$8ld$ZfT-;RuO1XJAzT1bUqy=u~ed3L|t!fS?-OQgobC zO=I*dxhM+xkR1L*#UgAm+_pgQCAl% z+ILj!kMATg4n;Xcr;Ip0yiVyTjFw2`UV?V;fOx7t-8>wY08W;|^j$Kd&W6C-UH6 z%+>~p!Z=+%g7`StY3Nm@Zci=}YA*Krw40?-g05I4q^cEJ{{ z+mRP#Lx2lMIVR(n%N`xwn6>p&R^{b8nAO|JJ1|kqL(hh6N;95y0kN(gYRq}{iE!;v zrqnSn{WZHnHxQCQ+meg0|I6dj%~p+n4B?+1`)GUguR0w==no$)$`9+|YF8aVGZXYX zmoNOYIGwc*(;|JN!WEguyas*cy7OHb9y5xQg`ANZ{k6`S{`$e>pGBE})_lS5uWxjn z#m0nuRQtgepEg&b^S}{HXz%|WZ zm)5?BL_Cf zrtRKsb~uheUZlY=?gy$hxf>6aL&`^C`1n3o$g8$8$Lh~v9IP_EgJ`3~AY<>F(-lM$ zK%#4C4ue8MF8QiMpWhu|LDz{dtd<+l7WSpvYKaGCZ6e?)W*f09;)v!huYbELy+%5=liy?Jb6 z<~x&HBmH^v2#4mvucqGiur5tomnIA#&u&~_pxHz!I7_{tX6eG78TX8SgDWpNgHb=M zi6(f&f`ZsGszT&9PFSRW5>u13R57rJEaTpDMa9wzOXJ?^^2j-!w{aLEdRcSCbZ4}(!O5JN=h#N&MSRCnH*Nf?Wc{-v zp)gQr-?L0ujvtI3OX0ZXtHELID=7)eDZiUed{A~yTg^@c0*Gzg;@L-ehWJ0I-cEP1 z_BNw{fNi}K)hidt!aQM4py<+peZIRjJXr(ZsCM9^twY+Afr&Fbmr#HLV zQl-yw9Gmw9Q{bDKQK4tV6;(8UCUC?f6G01P>gEr|G+*%li)l5_t6TH?y=vY{JCCwc zZ0JccB{n>dJidn)*mAyd^z)mYe-vGMeepT=0p!8L*3SY9H?RJ)*sQijPQg-W-_2@y zsR}*z_c^X6?eXEK>2}8-_;>R@C@=e|(X99}YMnE>ZE1_Sioc^H z$TFjmcFvyFav(IfC+kt47JrzFI4|dSnk4znuqNYZsbjVx=FmXRt6$)BQS@GW@F~O= zBgUz0Ch)2UW)?m?0U2@RXN`}K5N&HWHi0+_**Vww{GK@YiE%U;UKD&79>X1&$~w@w zI^kO$-Hi)@NYpf{G*1S0`gqHstE1#^YacyXj8my7BPC0w3@Bs-Q165po*)pdhs)+Q z5I!(Z1@h|r*0s1hg}%rNUsK+wP{8`0DI1e6k-YA-kRCYah0icUGEZNw8Fqzg^OlLa z7n#Ct4yM2epQ8Xj(Et7hFgg?vQqRipK}HfH_24RG+qcHsRM@?c) zD?^)yTYC;h0z*HvyS_*8?3Gjp7lyTrqbB_iOh>wWnbC9TMDsi^Aw8p|i<5;5mD88YquTD3zvm;ng?AumH`R7c+`&{xQnyM7o(>xpqH zw08=}LLAxkQMUCR+DbUd9&|V~vC2dcU1FT~%3R@h8FeXMw#<=gt}o^64eHn-qAa)- zOoGcS^M)@i8ZVQMNzLWIt=l`>%ZzuDT4tCo0vzW>B0_URAV@T~2q%5-@i7Z=XnGUl z4V<&{(Oam^VMW_j+qUi2V*~0=#!_-yV|q7h?i;N;a00tK_6E(zOO7EzZ&{91uYIzD z`F49UFETL=AHDoZF=HcfHS?yR4R&d&f5eIb9w;4d)^7Z~-4-SRCfevCD^TL-STqq( za73c03cdM%uB&s+T0mOhBcRf(^nBo1Uia?w@dw-jsk)`v6URJbe+;Z%Ro1t!1g%!L z*6kIN-Rcm3xhyBA0RAWQ8Y|cLu(5RgR;@JyZf`ik%&U=bjNLo-L^d$NihuUei;d!k z2IAZAPxDcuw1mX)N^ss8V*XvVlE_wU>@bpVx%7hAX_C>uTX zd^eQ(VFx#es@mnOuh`UM)Cd~2#Q|aHchReErEC36MvLl4)+u(4O~7i?U{+p*i&J?#Jtix8TBGFiArlB4Rg>YGH(1_ z^QLY4vWEdSG3xWm&uoux@6~>hHRfJB8>GiH(?L+Dw|B-%jtrLO^*y!lXNk)Sm=8fL z>c4I%r7qHjuDG*>M}=phE}!uf0US+BE)Fb2ZxW%<{joj2xnG{dL#)DaWfSO3a$2K#;|>LhrByh%#qfvua1dL7m^Sa9qK@RB2gq=h<(=p;}MaK zm9s~rM#E zb+o(52D%K;0xm=2ma0c`t^}vODx3|-VGf}9Tt0DKeK&tE1P!rU-piQwF-1&2+Eex` z86HvoMs+vIrghb6(&PT!9f_cfjSiNMLy)Z!DU=292daYo+8x6&wck&a0;? z+ke@Tg1W*rPy^@c(>&byrqC7u<0x19CJN3H8iUTGSPobk*$=QwJmyza7;+MQvwLSg zov0(aZ#Fr6TDx;s_paV`Weu*w$TW_nlzk=oVJze%nkg$JEMvblHjBIUx-Q0; z54{3Aio9+*IW_VzwMpoBLYBnG2?` zbd3QUluG&jX+{5Ewn8!+#tTVMaJze}n0o$ImN(5m0eiQ-E7a`h@dL1Ty=ieWFU$Ia z%$392ZZCJsl%|(*19bBM23ZmRG`EZqhxm@f9LShb#9oo| z8v$T2lcg@-?kXsK3QJd~@J<-y%uN>?DCSo%VDKs6W~Tu^#hS@G{FV0pjEfZqr7qFP z>?dxK*Jmv}5Ex8^bQwgi1&&kEjZ)^!A@Ae6NEE<4l(b2#CAjfrq*+@=aRU)7LcnaeL?$JPes$XZERt%q^M=>BpK%rha8*=YQ91}v*O+8 zx_IBAtGUKoN!jOjTkpPG$<8)*&f`a}iiL@Tl`*}-20Q$+I^&^RM5UI;mGg5ECGc~Y zM4kNG#!4k)1?Aj*R8>s`a3Qj+zc0@A28w+z-u4!jDa9ID-kNn#qSMmy!Ui_Dh5{(d z2K>{2ZX1>DhA~~gZJ%U7H|f~y({SS<{+VB=hrABksuf6+CUE4-j2i;!E7!vzq3)Dl z5WT~jS*_7zpYqdE+@>N$V@+-)Kv;be6yLQE6*8qj=8K~0!&^?m`8#q-3h5kP_%%11 z_|BQ}|FzX-J)b3PTG4) zo2OB2+0?(wVpo>;Y(qwx^@$yJl|MEm^`HBBm$&xN03-KqkRurvWm<6byI<#;zQ@8z zW1oA3{S-=5>D~BE7JLhlPgRHUDoipij@>pKA&fS;+AlZPUbwtgi+NFF&Ax_dIH=@G z8wN$4CX!0|U6G%9 zjm`RbRuZy5sz)#~-_;?fHc2)NnBlH3C$?(f^TLKuxEFhsio2@tZ5g(RetFU^c z8lNIZgKw8S)MTT7CyuW&VI>WV#uhx!U>nk6w-bxX(Ka{EbRk^tzHzs8(tZe5=tjn) zNGOEqfgQwAilJuicsyYy)i`2>Z9pfIEn@3JqAz)L-Ge)?NUFHlz2W9rct(5!XGh zYgJ*P^hE9cvEgWgJAmR`}=SF}CQ| z2hghV@o-bi6rV63^shWR7l)2pc#T!jK=T^jqb_}lMSUsVXcF@dVjiRvAn&uO z?#*MCv^-hD;sE2hIe5nc`G7^BR^Wv>?f{vU=fH6Q%3(>JROks%pg5apAT9F_aUQl^ zw$FSmJPo5OtUKp1E#T-IQ{pMCyf)n%*M@KG$`IBTsU#gp`kq2v?H9VyKVxOB-)OI(VdNqP^)939dnWDzfNOYp|D2?PYR-;nnuYCj7WyQJBQl zo!ToQhYTmUP+oVu#&8xYxgEknmh>#O@*u%#9b$3vLt!0Rv$P!{ z-8L6d5i?>p!>nu4BIwNmi8XM;kI>MgLL9|0!g`E*hJzvu{i{?gFGeM1#L0B*(oE+~ z$g9(tk7DH^I1FA;H^FqL#s4P}9BW zn7?(wa{*E^@G__Ns{NFo?Q7Igh;0h0Q$a$y*0x~i53pAhO%@Sg96`!S2Cw^U6y zmC-%uN6=f(GZcGH@wAN1Lum?{k``{^XXu4~p(a$3P!WyJ>J_@%_R+O%wtG0dwD{fk zFi!4_ip zJwz&$+FNcKP1|g)^)(o?ohlf$eSF^GY}vXwT`7mNDJkG6YkUs5wu^3-H(!IF*sz?t z+-SSOo3J%pjFE=s7x_oT93#dF{qb!HC6ftpSAMIcDSXM66)gII?eSCj{3S}VQ z4I2!%^tZ7+gsLWCG^*54}3g3w_1Lf13&YGdVe12^AV zL4@*wVCeX;ZG3rKWs0SS3r}fi6&%zxvn3aDV@U8yu}k8%ULLPilF1t-NMkr6^!beR zSnV2U?ubL$>D-(LFoJpO0LB*Vz1z zja$FBYG28$D*D6}j&@S#hTXaAdz4*~V8gx?@i5h{d)Bwpt|cy1Ifnmvk7RV2)U)AM z8|zSCEtcy>LOhy~$aqAh~nLT?HR89%UpsVE&O7H*tQLg`ST=795L zB)H#lyI@tga$~U7r6J$ndqqjlE1KJFSu;GDwlkSCJ1jt)lh(W9ygEG~i_;aI{P1kl z+=(pR6wz6pe+_XSlMgpb<1e2ulEk(fIMk~d_bKS@8nzNXN)NBu5cqF2yYCW5N^CUL zpnkJyoPT1#?-8{C3y)=eu3cDZGbts~hbCO)(Qg*Bj8%5Dy1bPXY;QATj zH0Cw2XXMygxs2o|Qnu1PBm&o6*<=~h5?%4L{b#PyKzVQ^8Zha_j(b~ZS|j$}o>QaD zx?A=h-CNTR{ZImpcwZlGX`9+UWk32lEvZy+c*RJkUTNt;+P=_`RfZR3CkgsqT5H8p z`~}Bh)@FwA^`k6qWB~l5v|rhDzGMZ&Db|)Z}$+E zvbXARw_J~+JyV>>TTouBdBuZeZJ&%>5ZZsqwAIZ@eqDEYXwHFQ7Bb2WciiN6I%=@l zJ%s;|oF4urZpt98^ME2$=4>Ci?8cC_sFv&MuldQr1d`_B#pNB2@+1~@SL|+j-X9fD zb`I{G7pKL60g8iw&3n0m6Lg>2$5uno_|^z)Qblu%UOgeUA}{qQmh2_2KkOe*DS47( zzeNT)A9$ejpL%n!?|9%d#GA3O;y!0DmcfxdQOTHK2NiJ`PRTXnk;V2slhv4cGo8+8 z)J~@Yebq5O&`aLr(vYC>en%thT9LkU$aMACf=)aXr21xt$7-8ia31g_I+koM?SCbQ z3ym6NR2c`QrM{pMt#nwgJXn9IUuH&1s&h{!_r4kTV%Qo|rIs$QpFKx%QQ_iG*Y?U! zbkn#z+GfwKc`S#%ma{#iWlMvfkl*1^pj08xIcXg=WjisXV^ zWL!>kM-imZE?39yjb98y*@vy+<#W%vF^G=fYI4awB%Gu#LF1l~L?~1!CU#ab#%rfj zS@Vmsg53q6=`(Y-igUj5LNo>MV`8Sze0@w^Wk-RCPQQAF(kCWdPtZe_-a^ zEXQ@xo3Ba7gcmo8Wyp-&4OubG7QJ@i@#lC(@a-KkvF~J8`usGr3KVLcr)|{OdBm*M zc;d+~qz7Mx8_itxB)S^pd&c}w@fv|Ck{r9gBK>5`^mwuFYD-n1EOJoD&AyA$5j3e@ zFk$JtE*=Sm%1;2s&i0JIt()F1P_Z6XG;}IqSfQQd0Vvex#`>C?TH|#Lje`ZY_WpeI zQ2u+q2LCrx6d)Ap%W*E$dA)QD^<;WiS;YcpUSqRSB9r}+`Z7&bkaEw++udI7wZXbW zv`{A*p*#bH(#ZvHGmDD3^~!u_0WV0<$2$$W{*2hyO2>tiBD+wjD#F7aet9_(W8D-B z)8-K`Cx1xz)mhrYxJ%@rHOlsHSDbzWp()P!hN36fAmd<%pK9w3x*RRWuSoU_0D z1bys?)B>L!WT!q*E@SYRv3_H>H?=EYw&;z%$EwyE_JmiLRD zj1s5-o0$E@95Fo*9_oo#0ue~)S(1T=Vx;?nT*!oF*_>_LaDF1bNqddCJ&dkd zX=rs9!?}l)E8A#*R??}Zy1No4Ca0GxU@iWtBO0>${TSV~p5!rPYG{$1HjTpLl0rwO zR9tbIjK{RJ^|GG#K7HRd`=#Mte&PG7ZokWr`E+4#2CQ7hzRb*=x}?r&G3rw%NlB~k z4ZzOo*CIi)(ZUK1s zg~^%gZ)DD8f_YsNP$&SEBZQiw-oyv$hS{rM=7PqqoUzn)0I&KIs|$Mp#%7}SVX~tRr(wDunVi+)o!c1D}mlQKR;pyHdzE= z%(|m7ytp?B@?AF!E-)PNEC9mcGhs)!9_H|o*Pd(@sk0PsJ@)KCQc_pBCSDOWs3<16 zOBNudc;R;K72mAkscQ~b!;iCAc<%6pV*><8*oT*tcTX&~mpGXTKB2Rr@+{n=kBC>U zI6p*=MPse(^>P#8F_fTJ-<<0H9Paq_aV!OCj5(Z)y;t_^tXAdAMvGz&MMj_C1ZQl! zo=XJYx`M%~X9EIAqb>gNY~~k;dJF?GD4(ZNlAhPSOZ4tjgIP1^fHW72To!>F*9Jb; zEOJT?1d->(ss^^6X1GU@c2O{15-2|*Z`hB7)PAe*5M5=0>dxug=MBoECnnx_ay&*U z9{H+4_0@`j278nxZw_v(glMu3t&xw&sYI#m4u1Q*3?tV<@^#@xI}F-Xmg91PHCAqn ziZFi;(SYEj04@RGYAMf z99RKM%G1;HKE<`3(AH14A%0VTBG3=Ab%Xvn^Wdch%zT}!E z828u2;`MLW){2fWR)o zMMwQ+$?EnerjG63JMEwe-mHY-VnOo?W7(LJ zryL-)!pAitO{g{(ETx7ZGuaYw_vY||$aG4v>1T03*9nUhm(c$$4yZVWH_jjYi#T9m zKZ*kjhy#kpw&_KG7t^|bd&L|1n~F4K$je$lAoCMbjjekHr1b8#t20!_sZS`{ zhdcgW%VfKvsV5w!ZSN;ORBuDd_%QD52fLf4#gWJTR>!IiEfKBPXJa-U zUe_TJ6dxGRyJ2u0p+ou>XC9&XmbQj2%7u(H z(Mx;i6BX8;7hZgwxF$&jo1lnYcu`e3qQAONx=S%>0pW!a59Y*IKPDLvgTyS~kepK2 z@!}0xHIMN-T1z5Dnz7|$Y(awxC36lF3VT&N&{b>E@(ye}#LG3IO`jXb-R&()3*$DC z;gQUa*D-fAm@jqW+Px*^pXslrk5EZYoHxsJ-gp;-roMHTX29zU>-!1sE8fjbBZ$SR zdga0~Z+h*6du5O&y_3@C)rtNt3U}Y^HJhLIGJ5`uuL@z|Tf*mvGJQ&w>OZ5<;vSKc zK+0x%grr4Y5MLZXDX;$t1MS^{) z-SxX7spe8-Cn%mHB##*$N$uNcZnlN4TUpF&9}-G;tbsVX`(a_feDfspm;cy;|J|8$ zj!s!Wu=A!bcb^%&Qdbc~$*RU@^e>!SD*82Llzbp{gZD>6Tg5ccyPVXF^?@Ia@HA zYjXdP1-j2jxnUvhwP28mu@_6qYavOVj+@D8kKv_Uv3}ydea$q&SPakBN>UogFJ?NI z?9@wB6i*Oim7kS~kF+8wpboV9+ugG%n#C2bX-|aXXBxpWe2FEc0|X~BRLdTEu!@nH1Pl)DRpUmNzNGvUvAykayyuVmaBk1jbtiGPdCKokd%aXE6Zsi8a3xYo{0-4n?`c;8 zgx7uu1Z<}a6hY9yCL7+M;#EW5tpCrnde$P9Ahoj%vtB%_fuwr4YVSU$XfApdu9V>E z+^A!xzgJWc(cH4|8ddmeeib9s~K_oXJZ$}~N*C8z7 zjyY_6Rst`F9r_MZpwy3WQa6Zn?|DXq>aI_dG zcR>=Zd7b>?1$LC^>RQ&Sv>Gq{W4SXmK~bYFZIXeEt*;do<_UiZP1p z;Lxw9HqByvod*PQ#l}sxb1k!IV_es21N*!3#!SuO%=UgickRB-RxH%i>4C8_5U76K z^52@3dZ~=ne(K7br3Z5!Z0kiO4cMeL{oVy}5fel`FY7qgrrb+`*x#?w{@tamzozSb z$x^rWCH+g5Uw)4HlK$W0k{j!759A^o^rhPTxT||K$Hv^$mcWBijBs#K1F&<{kT3-v zsNCSF?}i!Xll@gisDkjv6CnbaY@$S~ec{{OHx%Z4?&}634~i>6@d0L=u2D0~$z80zk4R1$&7Z?U0Pb^x4)br}Q=Gm8IB3e1p|8ATXr0 z&)))uy}$Qa$-9QJgn++?WwQ50;KxUbVc=1T9a1I@L8rNr(8xf8ozh?BW=lW(cpfM)0{X0yafS-VTsR> zPQU)rgT=~_uREeq8lIRuzA6Syopu6K*?;01Yfzdt{siE}h?n0mmIoHQzC}Ns0mR0R z7??I#Nb0q5w-#ejOl1)ok!U#tz5uxALjivkF)*FH0SS#;5T7!!4C0j@Psy_Pezi8> z&(0{k9!(|qLf9GMIj<@~2j?QduLw{OxM+re{@mffo>XkH#TSvRu;FVz{n(aV8f4(L z?b+zA67ha$*ji8jz0jh^U(@wu%vDoqZ{B3ieS605ujv9`vRL_iN&k}N|JO?%+Zv%` zvLyCrLyVd{cpTwvc@t<@wUT9}m0a$!acY%;VP zII4GLbc)-%C(2x!L%(v-bahIsdUR4}Y|%=U%D$q@aI21z?Lj(~&4^W55^wkoiA{}Z z>1h7PVJeNE0^iRt${()LfcuR6xP&uOIM)<>3%imQQh|FCMmGz*k!c#<>+I2UGhXpY znB2BJOUd|@v9xII}Y z%oy5@?UKESSH`O$YUZKwr$rfKeJESo`roWL<>^lV*Bvv|{Mlc*=zc}2j| zbkH9SjxDjSI56xY_v!ZbJ#(lMztnBXBdi)YX}AD!y5wwUb;cW%p5&0SQ?`BAhz)$7 zC_a2|HA1nVA1uoEkY~gOdof@_d_Y(sZ0T}cgPwpfv(@~8N78E7F5x#OGjPFZ^eH=< z*wvYvxI9P%!uIOQ@-?*O5TtN`!*l@X>Bx97#9j>b%j`i-<9XUCo(Twj=vFuv!uS{4 z8iZ5m&$T!2kW`kpJb?=zs8h{9k4H$15<_j)$ro ztWA9S;hnB?hr(*zZhN)WYNH#y_t!q|D02aeK)>S{C38vqo87L*A@Ihqm8*F*V-#3r zDO)Q80{x5p8W}KnWz~K7GOZADdS{2gK)j^~?&UEgH!oWcWU7@mMXeAf5+;@m<*-tWEun!f^k<#}2>ozoy52Szs|ey8PGl z_AgnIGQOnq{58w}7neK_`kl$?yRUSc=7YW#GyKKz1kKc54@SXX6ct%%gA z1wdJMH`@L(Yv}LA{r?Z{bOKQ4WiDxOGQ}VUR{5WVPRXe2ah2U@M37~~6S~#uK_Am> z->Yfl=t|b54kyQ~(`a>1-`wy`)f%Q{mI*r2W zb^gPF_{0_YrA>kUf?0~UlSJanTRs-ox1(0CfR&4;+Ip^b%hWXj9(LTALg(kGWcO7} zwkWjf8ginYBs!VVYpmc!rh$>sMN%pVW&G^{Grb%2cSaDk3|ASM)mgLY!?x`;F@ABD zR4MTo)tcN1ze#vNYngg)+A@bJdeHSyMO95sL)45`Tr#Z{Y+*q@kR;Slyt_-VKF*~v z4|Mjbbe_Q?p)s@5mfitId+lzc7nxiJ=a>HZkPbg2#}v-B1v6RI;YXLQemnI9S#KP7 z#@YITc_SOepCPpPh3oSZfZzFtkN-FHyP23)7r#coyu82nyZZbOKMo*!D`7pu3C!F! zqaNw(fF@hwFAm-MRdT=Y=>iKOeMwmHSXz0W zUV;nyaiO%LP4>oq-NK}ZT9Ei0ChJy1+@>|9-50L7b>;CM#n+l|W|pVom302pwY2@a zZFAMDTjw8d)M=&pModko7ko&oKD7RRcCU^*e(n>KZ3OC;u%2~1vG#k=K8E0z{D!}$ zOjXHu9+rzkN|h8%6VL7v^p0N>kr@3!#I7)GUNd7y%W!!|YtL&t^j_C~;`6r|N|dS_ z$!pOsynnFB>&QASvuEbM>Obc($_sYT_Yo_Yh*0;=y-0L;91|#^)BEEwuPm8U`(LY^ z$^Y=Rg6yA^|NoPn?hjGX{uKrpvZLo#os--tE{mrFQ5)77KSU!SnVif8aDK&odP0HJ zm=e7bukIzTW7XW9dE-v1*@|wwd7NmLfOvDM-A#!#TWFbX`HlAeO>snNz@^CXIh|=J zvoW9+4}Yvx3%JYo5=epqpc(=rF=X_TYeO(lRrXng9ip*k(vd?{;Qz&YeBk z>}unt?cqWyQ*6kh&Q||~wl_n`%Or8_y3WKl7eY>aD;|_bNEkN?IbE=~n}r~v%dVDg z@es@N+h;&_ZA!#2AV5ddz-f%FBRA}^Nmv3PPl;-%8R-4NC)k*@zJhuOPG`&A~m7h=jKZr}= zdP1-Un9H*3M5E8lwz3`pO}=wj5}rp%$;8q+@dyBGWab@ z)Tl3~xxRym7|zfW3qtf!c{kz#WiV7%bv+F)Zp3>scZo=&1ses)uiP`rUy@2}=%A%v zX{Gl#vn7An7^o43BFw9^&h+-KTy2|*B|gDgcx3nFSRk>^5$zk}z2CSGyHyQ*Of9-* zwS(mV2@Gbgy%|o}xJ7K@<P4y|vbdFy|Tf&pe{Uvpyk++zRaz5UVYzdr#x|1(W| z*CYzHVEOc};(0u$C83Ys68l0&Oo7^?W2{})s^ds-Lz=|+5@+Y$1IEl(HFsqcJw6oc zo=QlVrlxk8Hxk^mYToH>Z##(4ZM2QvPk*K!w`>Eeyr80Nb41;K(e9aluf6M-i2tom)cCCgSL@%7+`d43d)*22)hmR_nG%UJb4GOIjABiXl?;2Y(Ml3RYcU$_GKPvV= zI`=Q$6#wK;e^fAka_;Z)roIIlBm$PUWX*=MoG#DupYdX^De56up-zav? zM>?U$A|yjSP;qngw4b=l?KU_z6XTKPEo9=D-)CfJIt1|=geU|5Z8 zD%r;7JUCCL!SecITMM8nc>LZx!|d^V z@ug6nzilPmI&}Hhm2fi!t3k)6`{|_pfoJCR72X!r#dc6)rzyfR(?oFvb5~BPq%W?? zr9VHRfYq@j)N<^ZnkAb3oyv*QCRo?<2uxsP4-Z5J)u?cFu&5Xl_Jme9x|`v;z@53R zi|daq_x&Vi7WD(n^I$(yPvc2ZX0u|~$|%YINnvgPA$Bu&&2ev3j6N|roTI#Jk~Zrx-IQJic8CLm}e|LE8NUg1Jfu7 z*fI?S08!WQC>@iwgQe^3$MVYbK!)aijw-PXy!fa}~fmoV6b` zwAZb?YKa12U{Sxvr@U+`S+3@VkRy_L0!{hI_PfObZ0mvL^-yD8L2O_o&y9IIW*^^a z8=@`R7@ko|w`%aZR|-sygNbTSK2``kd^z-dhSxrE1(tiQ*tl%%*F@#t3cIK$`R&t5 z+o2P4tNcdpD2w(3rel2a@BV#3|Jiq*V_%b5dXMhE{=`IC?+f0T{pAi5)A#=~R(t;~ z;g}P_VM-7Zm#f{YlUq(H9AY>7Vo_BPa?XNgs%<49(Q;{~)gJ6p&YnthytZTtI3lz5 zM5Z|G~(`;m$YZHz5CfZr)|sAK`N!asPqQ`RTvgdHJ&z z_LuYj!X1C%8~$0>^q+xA|AjmLyEW`f;y=Ad2c%1EFzkZ7-~IX7|nX`h&e++#

R`{y%@+dclc!JWp(9E;TzR-Q@H3j3=*@MlTXeuu4!!arstS=Iv5wwswI6ZGY6`M7)^B%A>%FNc-AcH_~qFtNej6W<9pXgxLo)$Glg= zJf-$McbjG{?oCKsWpk~n+zz#GZZsDH9yuowj)=J&P+CH`=9E{NAU3w1sv6UmxSOw*2dr@Y}dBbK6T{JVd{0UGvLS7e~uDvAr#nl~e(M5KqM+-u5Ct_iSc zVJh?0VzUSn5Ha0XiTDypA6LLgl23FP!Nx6TjIFy3S@0hE2sc=z*G$MpDHc(>;$`hZ zuT<;T3QPkPkyLQKHDwPOcuRMQ2WnSsltU)md1w0F zy~%FPl~W>@zZ;dNwn7FQ!^WyBNr0CR-szk7zei%r*;fznV-&I_Ia`<2zR!${jHaG0{;TKpPtG!`qJXpN(&e+`B~^Wyx!6TuN-k z4U6JdBkkX!(XH`_(2P4Kxr}l(?x@bVmvfb2 z(rvXOu^7*53A4CidqtWfVbI+IP#Jqb6GQkuSKa!(nKoVXI|MAXsN^C^36>fh1F0-s z$3KWIZGpu6XYb)}>4AotUFu-rY+069)3&?tem6K1d`e!Khb&53>EK66-9lu%mqRqEjqq3r&~=)1Df~g{ z1w{qhGWH^B{EE#8EmVw5L2PmmG5cLy>IwboF0!`Z>H!l^V3(p2(ztZ+iOIWkVq>Kz z!n8d}KQOuXr-Zj+Qc$v#tetF4RV6<}v~X<@o7xY;v^B%=)$sF8+y$F;iCwPx!<%S{r>7n#{z*TO+RAv^MOl zFZxT$C~tJiMfZ!tD_o|d=Z!rdN%|-uk=U1URi@ROgt4bvUM68ARAX?HSBztIv%Qj8 zEDB`Fz!!M>@zJnGqvP$At_3L zS5EueMC0}(?w-zL@w3`h^)23H>qqiO^J*O%PGg0Hfdr;LPqzJz`)a^L@s8)8?ha$zo?{P8fM4khwBk88R7dN4%Al^u%wM1r6 zitCiqWcGBbOK+bX@?o+SsrqgBhAc&j;@CG~FL(9{!};t8_k$(A7FE0qX92^6n1cjU z2#E?FA=7?qg_tCtl)L>r<$ahJ&(s_e!F8SGR}a-YC+^i*${w$9hS*B$2Z>eJ`#?#{ z1l)dqvZ0F;nWQ}S9kELpd6g3f2sqPQ%nzUvBUND5%D3_|{RcXucZrOVnWp(xBX6N2Fxrnwrw|XC(ca$?x1gz9})kJRBf5qq-X9 z+!42;d){HVu9rT)a%tcLML{WUQqnmm01L*_I8C*MM5_!-Mfgpm;V+W3DG1s{=pftU zo_qG>bF9n>-936&JS4p(V49QH5WaPR`WlCch0E9Fh_i2AMk;j03y9Oh*>C3AvI2Wk zZ7d4*v9Y<6BO~P+#d;bmO_yly1s>y#22SoJ)_FQ6wm*Gey!LP1)p12y(49fvGcVT= z;Y2Da=9`z8Q&Evvou@ZVeVO4>`Z59lK#F38$cQ_TG?tW~cPwCqLc%8r0qmTqHmTu} zW);qtKe}{msN)zc>oyHzS$Sa`YR(JB{DOsRF5v2zt1~<~7T0(T*uat}OT&J{p(R62 z^e;$OX^&1pg`%Amf1q~T^*-dCcQy>LXl*Cys`PjmcNP{}@;>U3JAbbEP}ey1W8{|2 zZ@slwFx7sWiLbHUdn4}XQ;@hrw)~Lhp;5JBz3<98_ZZw`^Sk%Yvp#4vFAI7o8bam+g(mn(?Qv?=+=J@b|0OeJ>M=BjKDk_k4Jksa2 z(TMO)YG)lkKM)d2co)8lZ@6S%CUN`ci}8K(Q4yE!+UDWR?c8ORXQIOvI|L>R=`x@9 zM7V~arq{cUu{zRgQO93Z|LQSuafrvq_}xxl3L1aFlR&+2s5x1qBr99EbxSk!lA9@* zPz6bZ2Qz~wEJy7MzI%rVQDe)GXz@#qyROb6>u4X{(Phn3M(qyZ$#PtvB8v7*MiZOo z@0*KP2QJ9*g>=n2-!u`3=p3lPcHAbPuC*t5M^{giVa*)1>;el`?tK{SLE#bu2-k*}i-*Z}^mm86zmT+HTY z*W}OB2OuJYBGRB`FoU<(UNtp&Ua1w&nYqYFPLwNP3zJc@4){H8sRdeR67`}3QdK=MO{9HhRQV+bpD>1QqtmU{(&ZOHCWu>R4NzYZP zF1z@7cUPLF4Z)C z%8k?V3>K0E5$je4wK?&hi>z@;;$@q{Y+_re_k1) zz`ocF16=8Kz)XNegh(gTrv57~tIVd^QDR?scVS{(8ab8WgBDo4>1=R!|D@((2j*rI!L+Fk|rohqLjJ}@=Msbxf0 zPS{ePjPlJGJ0SD5AJ`Hq?2K0{8+{kDk@FP*?jnZEIDL=feqF@z(UDe+JJ~`~{)J54 zI$w1Y@PcLLe0AA^A9us8o(}lQ7me{L5WzX`36-CiEL*Gr>EBL*c<_~eW$V6!QuW|+ z_M_dsI4xGS*tOua6!i!!n)y=E)a+ZEGK)z8y)A)*^trdX-s=t>XS-YvhZG~=ZqCgJM;CJeWyY}^ z?tU`-KU)r(-T!bR{FIu^2zD@q2UBTg0d1W_0^k(3f1G(x zBhORBTsD32y(L;seQu)sFMgC zNHjpFMX-YGoflo}q$$OlvQ)R&jd?htSMn^7av1I_idj5SdOUwl1^3 zKHcwrs~hZpbZB`?xfRJr)vg$M`&4K`igL3TANKUl&v!dy^BQIvS1~v)WCUIm4+|fE zTm;37H>K0by&kb7C-L+}kN{%H5ZVi!W@cuFLg9~%$e` zC4tq|<1sGd`5+iT<7$;*>vhjXL=eLK?$}_shA}^maa=GA$Vq*KUDmuz-I4?-f^kXw zS3()Xx(m9{%c#&-v*$qJP*^8~us$P(B-TnKyv{s*yUnJu->g)Q<;J~Vbq&sxQB}~h zI3<-B+xS(UVR5L|sQ}sP^pev;KIhY0?XHdnV!}aoZsrJ>+bD=V+sBz)(of-0B#eZ& zlj1mMu(~SB9>zcCrlCgU?!DcsvX1UwEcVSQaj`37xVb3l3iH zcu3q46Ha(~IMm6NbJ={-JmmGr10CEl+ho7Z%VNb8iUe*Y$i%a~rcF;8Ykk>ut2$$!F-khp6TPtG`2%i4LFq%n?oe*4fhcj+bC36BpUj zog_c_;$uW>CoV<1>rkr(?>y_QQ{WYIky|o}o46~JZq1%}_gw!N-qVP^7Fl}mv-4Ek zGKIt|~(a)uc5?$Voz<}SGz%H#2;4V-G0 z76!R$QLVf8$5`gWrsEYtR%~0=N9<=$G@Ci;{>-(48#{{WOsKl@U^0}aEql_u;RZ=i zOu>e~$PiXZ^eSKrlhC{P%HZO=K5lyecsy!@Q_2w+#OjJC?`p8Il{yhEvK;F`Y~^O- z*vlWgVOCGZVJ5r|PUdG^z{T6Huc%gfIyU%D@7#zMJbIlu>}!sJznO-15g2b9ay{#2tih|y`k7ww;GIB z3CR`trg2H#K%w!vt9Y$hKDaYG=t|PbVU+dx=u-oO@9$Z7^QV@-IZBTIu zR?jZuw@Z&s%@!oRS)#nuNfk^OwGJ5|8IRoxK9e~l95>-o&Iz`ND-pcZWNM>X4&|U4sQfFI9r=KCsur6VAQ`q{(rny6lK;Ez=YM~>YFm5j z4J%jkLSNr<15a;-f*tI}T9%r7u21XR@Ov-W?z>02Jbg7_j)&!epqKGtHKcwk{>QsS z*hWCw1^8BX=R3c7thD^5$Lz1t0%>z8hthV=^J~)qh&nN^me*T;Ep^Ejn((XDbzbQW z1~R?}e&4s*pmv4oGUkfTbeZr%?V=?n%4SJF#Acc!Cnr6UuVy~QT*>x7TtM_jJ9$eM zy532mxB-Azf7=+UO??GibhQEPD*KXZ3M~-DSLm7JO==SWVqDL!^{Mn}`v}~R*#8w+K?mLK}kq+h@|oy^u5M!BWQs_<;mMeduh&U>;(AvB!ryKTw2 zbYlGl$(%>2JTdv`p0DXR z>I2xcnilq$&xMg)v-nmU_gK%X%|-!Hl%JkUFk*Y4*^uq%CWg3}n2iDhfxMr?cp*g) zC>TK27a^b^fX@uLm5Nty_(Yz?ePX)u!WCA{q39U;YRsX<=34T*kc6hLD9UYen->OD zNGvWo2g#yZf!MmNXE*Qny&S8)j$7RwJvSMWnVz5W;JQhQPCeN*TKpx9;fYxsE8ukA z@a+MmTd5Lf3;28u729m@eAFy=GC{zi1_pzAi}&(O;UIiTVvI+Hg;dG-a*0!F0yOmX zo-98=HI_MN+^L!=%~EgGwWDNc<4_Z8A1%djt+@04uyeudDYXxp|@-Jz!S66dgs}pfxYs2*Pp4M)|dKFVIun`mFhB-rc*9Ccph6T)UbnX zZjw5@moUTT8R<=$E)gQn3te3TS5Kf!d5wGE;>IQki-2*%MdcIIfyjZ!uIbwa1%HLk zu)>Hn%~;F66U4oPRjZ-H($j6zzC)MlG%jD^eDc$1Rbsp(M$GtfZ_#lziPCVr+o?nz zh*N&*EVVhu1iFq_N4`&^;ug2IYLB1K=n0RTVULEkkT|7e!ulS`KC||#zSYyvL0lV9 zGq@gOzQJ~{dO*QA0OO+C!j%i15}_NYbq_!NxoZ6C+mKg9NxGLz!xcv>q4&mlT=)|h zC=7-#K?p-TS-^I2qM_*X8iM!1@EJLM&vko^tSxl_OFwznu^|;nDzRi4kcJ-+lXprq z?v@ku5YrH~4h)&^oE~Ps5v-x(CRVffd=A+@K}KHE?ypr81c?YZ z{k`hb9*6F5po%(vuA+(>Jxeytl1AbKr^<44Tddy8YR<1lvsuc=OmAwfW9M`N4$OuO zxu8bJIlgQUZT!Y_i7lrJG@u|{34z|qFZ!&AS6Kq}A&G+lx+E-96_yElHMKcjSV)LS z2L*wo=Q$37W&?UjwX7~E6il-9u( zWVm17(XpI$fjH*n9hIh8u3opzLSh9M6uRA(LrNh#vcxnrwy76dh;91p@(VeWWG`8T zn;X8!C?c4n)Cuv3&8?pl6JE%#vyzeJiuOvrZ8p8(7%&M`e=Yvzpk;+vH0i@mo1Ydh=q zh3RyrPFpB$EnXy0+)Jmp7f1pm$P_0KDB9vv0g7va!yrKt5{e`^Op9xa1Pf9KQoOj+ zn>pWi@5?+R_nhy0?|bh(&&dN}XD9prCtKE9d#$y9KaRM0_?E+u$Ys0tfsV#;^X-uW zwf${0kPCxYQ<5>Hlqt#OvY|Nj4<5}Wjkg*QvEu$&`#G2%~S?K9KNFi9QhNi?mRK+(I zPREsw&BM~_(T0-x%f`uW6FA!3w%2?v$urH+^_Ga0ZYa$}B5?Te7#xI#8WSH2E+=Y( zydS?H?LRrf_>SBrIlDWnNE$&NBOs{CVskq~y3%k-BMb;kVISN)+m5;OjY{-aiHnqo z2xg<6l(3ziai(6R9RNtV)!&wem8D>ss$eqG67`6MEQm?S!TyF)<33&_&jNdc#3lAq z`@AHQ209-zJfzbc4ok}YQX_~7FMQ)Vb^2r+hCUc#7a!R%tm(1 zxpKy<|5Xj;CL~z(wL-)t1E4zA%3Q*sOi9Fo<1TgIVKB*vbvg(nyNcCvXB|MhC+h8# zu5+0{B)45As$9l=eGHT4YeFmS%+k&9O{PW1op~SIQc~T^SY?c^+PyY8eWPK(PE3X9jQaJ#+_7_7$x@LM+6=EX$DpoY=hz?%C% zS~pK4fAzJ_$qbJZADqd;Du7nyCVmLm7A*H&d_DegUM*yL5w@2f1xD}X5wWT$tWxGEFQWAel$4mLG z{2ca>XZi!Bs?&`@^5@DPS2!ff{y$HEvu7D=YLx|}5v^`=c5MnT_;{HCRfQ>u5;kMj zQ`qJ4CzOv2MlHquI)Ykpk;;sb_>Qe$CcXV6V^&mrTFC*+mlaBRD z^wU&~#9~>v>}pgBJ7^j z8L>Q*Kbhz={vCYt^{?bmO?3sy-=1CM!x=~tvH!=k6Nzm{FcaCcsXtAyhm)T?NzMto54sjK2NE#4<$ zZUy_fYkL%Se3O+sqzdrXc@FcivYd$cG#XtxW7yv@y*j7AAji&DvK|4hm8rq};-@#1 z(XMfnSm3R2LFHCrkCPe2&nbIydZpYn-D70kIj0J23q0-b_(t_Z5m+Hf_`t0{?K=LK zG-dtI-Q%o|z47J83*N8Iiy3b;K8lAo{A8wJZ1S{IggR&8v-un}HHfFc&U7MhpQ}#8 zR3#z_B^cYUkT|~nyT$)Qsm{>ylIgW-7UY_R?JcB}@VLjmmgI5_!aA&G6?<9Wq;|6g z(rTjA7f_m@u^3d)@MtkmZ}+(ZG2^W1^)SE=)89Vy;d73)nlWos^rr#4lh{`c84Jd3 zyES!n<-Q*;3Q7KN5Kua@XQT4*@$Hr7 zi*qtps&vC>+PA>M1nn*GkXFsFCEe*X$Ri#j1sVpzr)DD_(0FcTA-lI8?5Ty*xQdH; z`sLmSCwFApE61l(A=&LYuuGQG%-&dz$N7h*yBJY3(DRs3K))hG0(X~Dyt;X!HZcHL=r5%m?BpNq zPwe%?8FS6w<*1nu85WM9_wDOV5MQmcNLwXBU{Z@LRb7yjN=wMwFlN^!YJs>xBRffi zyOrgU^iOu^?O}wi=4!Jrt+3HUX2V3W{sx;gere5o^%_uu`a(m@Opk{gjZPLL!1-co z%i{g={N!gf^2{*zX_N`C+FsdkZjD8<`-pW`=1~liLAqDySuc1<@IY9N$4Dvi=bgpZ z{SbfLsG5|h`8!>rS&~l3(b`j>^ESWBv8Ov*XMriNTQvPyK|n?M4A8$x3*ino8dcx zM##@jpl>4wK@YQn?9yciX>8Cj|}Lq-z+Phkvx*Hc?X&=1^XMB$0wSVIjxro zyQ}W!BYEP##JJF$4SC2UnYd3Z3a+`<9R0lfylAqNz1G_Vpdyjo`jeouWC{6QO2!SE zr(Z}7et7S~&|-beBzqJBrIktBP4?t6DREaHUQj2zCVspL^IC1RBWilY$o95LHSFcD zf1?^b4WJPLP!i}NhF-W0dLfmM3#_^@K9j2tYzlfKIUT)IaW>L>pOxHWwn2981+umE zs0v^)Xg0S9w`&sk+{C?On9%SM~l%#`5u1GXPBR}owGrD5KtUX zN(#+zYJFD-(PP(UgM;*(Rk2c=nR@^G?Su0cNs5VM5Iq1Z6{+C~muZ`B_F7*|8Yj9H z7>2*EZE4g9t-1q!b0vXy(*E6m>(`>w^2a0Wpgh_PG;q8MptyP&xvN<^P^Ipm-QfyO zD=B?t@?OCvOGb5HO%gW770)sc)@;=fn~-Bn60L1)er`18eTred`LIs~+G`_G={)ZU z?y}*pim0Pr?za`IVg~5!$zCRmw5*-BYb~DuSNKPYyN_~@=&Hk z@#rXQZb`~IWnmn=V# z)Lo*JrzJ{Q<~6JBw!V*quYA`zo>q5L>lyr(%y)}i6WyD<5`t~yjT-uK`44PBlmIX& zd?IU)V!BFyN<$Pe5w1Re=d_kZN;EHaP4%pR;x^ag#*J?&bwBpgo7MH1%1zUDEHw3| zpi&7~7lFp6<2m>UUNn_hV9oi@K7K(Z$>K846@B3$Uee%feE@efOfIKG_yAFARo-aEO-F!YY zZQ|Kr_HpGv$$A*lz!s=0a*crpBv#!qNzG@~aUe9-XQ$`}#HZA;y66u#Ti(YQV)Qfp z_#I%q`iW2T)4@N+Pp&)7+w{OG#OJQULqzB}+#?k(g1UmH*I3r#DedH^K^R_3fi@C4qWh-Af_g7tWVbS`gRC{&D-hxm+9cYTcLq0#Qi zd^goDE6u3RB2m+^_HtPiC5#qLDr-_I*)CtpN9j7aJN*UvQ#+ zUr->e;`Q<4c*~u_CkwrU6XQ~iK3cA@RBEvrn)w29OW<+=aB*_#4zN1!UKu`L{n5)&l27 z{5Psz*n<@FpoYl8&{owij)u{j!_ixv3Zv~^hZ!+QlZP7LsKhk{pUb^aQ!gCg;zqOU zkZM~SR|B=DMNK;4Bn$Mu#B(%x$$Dk13>>2CA{rAa&$6?!X@u~RyBG3yA3xB*pwZBs zy%~-2mbiHJvMjJ8xT=}hw~|TgM{=Auf`178G4=WU_lT!lu-4~#5XGNHoLmJ z-c*4E$DjrY!SNpcw3_fXfz=i3QARF6STLXgtpYmk-elPZQnAHQ+r8S9tCh#XYtBUq zyjEK!kp@^<;;^fQLzrE)OhRkAK&bVHbhBO&@uzxkDr*a!TOmk%K@kO$u{3JZ^>_C9 z-)+vhXA(Kzx=$wyERb6xy32Vwe4XG0Oi!b;#K}rzeT&84MBY#Xl}?`G`i?*MiEF=4P;64kZAHX{B&sb?l~L%yuIG} zVu^Mj78i`k`q4_o*VW~y^(*?tEv2o-TP8ZnA$L%^4m) znoPeirO4dP5;xquphLkjTP31~qCRuFDkxFds6VzS5b8}GO* zWb_VRzSN9u0$gP336=KJc!rD6GQvHseJIrsUj5GQKF=o#X9~~e^8*3fFSY?^T|;1{ zdJNr^l-20YH!3gv1<`4j==qo#fAe~Q(TC@{_4oddOGQeHf1@m^y!X#3aPqnG;=P|Q z|4qX={eDF*lL>ARsl{t}ghlT)b-jXHFXQvjH0>tsFkayaxX--eIKoBM?!hs@9Qrjv zGq2MpnmaKU)TpHF=ek@~j4kCX+$p>c<&ST9iggel5jQc5YO!&8G$LK+Y89U#tstim zq!=XqeRQ`}vEe`o-3%VqP%4y?7xEG*s<|Mp#YzXa0c|ODAFja!J)+!1{m_Nf1~_vp zY$W?H#6Z=J=F_%PD0ynw?R=wQO&<%jY|SBi-xr@_}c^Llec z`UP?iDmxakK7RIOAv_l=S(QDO&Dd*7YzXbOUYBTfV^3-`LuMXIfq6uAy{k-^rzl^$lA$Hdl|YvD+uy(OqX#Tk1#o->AaQ7%wk<{3X+; zY8dMvr~E{?8xXBxUUz4W7&`A=S!Qh;Fi-_}$Q~ziw-TCw&{!D@XI6`!jCn4{E0Y&% zQCEdh+&3J1`77Ri%tMdn`HEcH;F* zQp$)j5o(*{b zAf}-S^IDJtVS;o|dGl1?frAZCbnoexwba2r?0N$LRXaRTu6)()#jgV+8xBP!J3i)m z@@A`+fjlFgJN%fWW<6II=zZG+Y*J}_n^^^T?oKf0*F7}3GN#sMFI_5IOU_BE^3m&C zY|(MJgv~k9=N6UQHU?E~egNWu?t3_0p5DW7y19N(=^hAj5PlrE2C$!`@= z->wVEZDwXj=Smoln`MTLuvEqjUiGDmS1(E{{6JS&u|9R-s(A-)2 z?dM@UHJm3FsnIPo%~P&4pv4noLdiu$FE(s=U^4dQKz*JFP#47yf%ev)j9dztiRuP9 z*s>Tpc1igf%+<6qb^HP$)lzbqX6_WV)L9ICEiQwi3$%4~<&jfpb0c%IfO19miLr?X zn>tbE`k<0w_VW+IW;azMon6q9Z{yh!{@EhtKCH>~?N7SJGXtx;a69rJjL6rZ+S-_2 z>O%LP2tj1y;9OEuY6-uO_cJ-FF=#Mi;xN>DBa z1(Dw=V7l2r!~qW@v)(snVc5+I({8c#rpAW*>KiZh2Ed9&wpu-;Ox9%tmE=^xb^ zpwW`0JYnN^7RgHv>CDje$?{cJur^y@Kxk)b=c1@d>l18b+mCKS9?rvD?PRBN!6X3< z;SD&`$(w;<(|i{Z z%cB@06j%T^T_chDgS_`*g#w9A-@_M6Dpju>Ueg@?_$S&G#D;Plhj0B z1NklFisoFC&nDwTtXFctm!QM+r6!{X37>s3Zj`{&`urU*t|hBmgPmj%jUJiJ@F z*gv~;d9a!^I|<)j^GuunWg@4ms>dNJ-=oa_LG>03Iky<%t8NaF?F7+f9uHFB>5KO- z7%`(tg^k~H&tx$(OG>CNiff{xI}YZe*MOcJ?Rd6!DZ^e5uH4+554nPZf|NpTZsGl+ zChdsGoucAHl>`f>y=+{N*Wz$cfv>CQf<+uv8PYFCs=B8XQ`q4^jE4+t)G7D_zUlE-r@Pl(A%T` z^4)e0y#3Wm85xl}=~ix%sIb0MA%H#xIXRb+$`PJywqc~;T1)OQ#?@nq2L3&lOIc-? z`aU5weM*LT-fjcRX-})}RT4u*pFq)Z#bTy$$KotseUspo9V$^+kdD*bP{hWxSi@EC zZ&bh?(lV>Xvh+4buSmg!rOjoep8aZ>jztY@?G@{xunt?to-Uj*x93E%T(#KF*-l7a zCuMwhv7HbAJdDyES`ijd4)ADSfC-95PhiZrw%#>#?j&%DjtE<_>;l_a>74DVOm|`g zIm!217k=7#89gzpLWyF~TB>RnhZBf}5rr7u(1ep+Y{80FUxT*$QjPb7#Na#O>kNas z5MtQOUeR7UZ-Kn2wW1dVi1Z^%cG6KX*+aE3X)bJJR?oscKs84p(ZF3&8RBCh(l$R&Y&a1t z0ieoiH(7HqMK@UgdT3Iw58q-TW9(56R80B7VYH0rfk}dI{;R4)(xXGm z1Lwnx*!1_T86}ZjI~tv2Xa9+}iyp(d51#oN3BkB#2&-hX^YHRmdY zvk)aYLHR}9Pbx^F91Ad_Jk=&m*idT`qx|)(AJn}vc~;#CacnK%#ugZ*O=TJG7JC^n zt9VgzyA)b5l~`X98G2|#6@6F9Sacd-y;I;f{yu=_L+P##pm25Q2%6nv+2%}AOWUft;0d_St)qwSCO(B;rEUFT>|Q8ATN{iS zEVDQFu3kC5N7ca6a!zak7FP=^44$%pCem-czg3>qtMtan#KT4Tdxx(Vety{HFS$p9 zvgmwwa{E|db#PQ2@tm*ut9mdM)5ZU7&1gG603vKm^+)7$qGuUc!BRg}ow9yql|o); zSaH#}V!=1=zix>N9dkzbwzFH&(2)T!P=I%_jp{kP=FcqOQBiIA069sms6tu zw#Q3qypHAt2^6^eO^_f3V2pAYjY1Hr11w)Ht*{~Z>);$Mk+NjusE90n2Fwd^HU}r+ zi$P(KVhW!J2>ctj6;=~l7I`$i&c%)mbDgCwR# z`tB=<1FHXO7WVmH+a+&z$1RC2W$?>b24~4D$U41Jqw)g=k{1JO^vxUhM~dMZkqio2 zIxg?JwRGUpZ~E_RJ5rctbKH4U;AZmx+?lth+epE0z&e-Q#tMiojcb>4_ndpKB=K*#fJ-B>s zcATG3A3tBDI=8$z&n@k!Gphe;_VnOCTbHCOxVkL;QeDu+vKVgzQ7Qzp?iOA_h>X3! zTl>5)VWKsbroDfn<)Wt2qo9h_$|XTS+JcqS%|4`Tk)d5wNfo6}_fdWq^>LzQ#docV<6znV3F{ZG~<-@pF4>mpE4efBi} zC^fgbw~D5#LX#2tP|Nz~0)T0Kwdn_d9+c--!n|lxV?7i_1 zgiPQd^|cnjh`+1Zt1+IrstKeEpO8cRWifja7wKll^6)NihZDonm0I2}YcIr;T3MhO z-XIFx!lWiR-$o~sk7d>z8-u?_hVY-IsVuuPdN*#MCUsCN7FjRl z?Hs&1$a6abtF8P`i<+(L2w%Q>=zt_c#xkZSr86eN{FV{SJji8JP4=WvdH0nwHUgE5 z*tTkMKW&klXfXh4ur?|n>4X=!m zUuk_zo92qT@4A0ZZ9KSqE))OjzjiU6Gyf^Y|3lEA9;`LlW+$wG2Tf0Lo7^1LQ=Yx* zg!hdt=F8vChaWHd`YUT(0FWi?=cAZ4rP6$2ABLE~|rkWvq+u3@fRAtDWkC8C~7 zD0ztjv%iQqlHwY~9T^7nJawW3T9A?okRrLY!PN!OTR$n;dm`uex(1v*xszBI?T^yBj9WAEdUpcszt^tod)kTtv<@ z#qg-OoTrgdG3NaJr1{%de+&QoPlWWPZ9d}>YD@57RfdYIsaM;TA(E9$83d4fTPaVh za1RS6Q`J!OEg_th!zC{~HS?1=gRY?5*(Tefr4VnsTHv4$OYC(D?w`^g3@!|aSmet)IGh^(i%|&3ST<^S_ zun~?sz*8iB)G_t-oo=(&~#X$N5371@49;jtS z@JUa;&7Fs#&DD7bC4D6)Tn6aKsn7saJkFFMr)_5AO4}VXd|G zNIudFT1)j_RadzeC-HDhs(ln>%*PUtHuGePzoc8_euV`cMe5+W}qJ-S4C_yV!} zK4i`$KRc}fUC(;rc^5zSOqbDIr z6S7P0A~}YWkK;A6W^)!M^o*jHa7U9Gmm0@uq{(BrPPCP3!A#XL+xXKOICe;cfS99j zax;r|waqK8Bsh#^MvKev3u-fY8#!?{s@;F=Z2GCQGM#p)8>cw@BXdg~$I6AK>)~Kh z!m0)@SL|bN=f?v@AKj~}vjB{ceuZRhqe|@7m%WV7M|uS>EH4zA5=&{DH%UL#vS+nA z+QfxijlHab*1iJ*v=a5JXNRiHAuAwohATio+u4QhjxVOcVXMac1iTA%mlCTUf}OR3 z7Os$Anh-LQNK@SmEQ{D(f6Ik4+N)UN%_2YWM?dfq$Lk!gSk9kU`kLahEJnPM_FQH# zG1jCiH^HH87X(48{?6=!?U7Or6ua-|Qu*APFncTlXDaSZ`6J$?h#c05 zLo18kV#!ZjwG_0vZ&dPH7H?xb=WI9=*Eo@Cs%nTjt2|t((^UGdvhkSXJLO+|y74ow zq5~>v7dH3?4dNa6HSh_x#lYxwQ@n|jMZ@Ogou1D>jpB1T zYwDHY zlxbhfRg4v?jeVasU})wu7On?;qxYuj{!o&16{}7X_V(-&S@NTk#VfH%m!8iKviK`+{Z3_=_WJm{ksmy z*Y@~aG=-qLv@dPhQ0uusgdS~3ZyMptDuNJ7GDcvZj0?;@e7jqC!V(;M79M;#*fjXA za`uVNp|bMpZ&X*OMYpHij;y{>`Mn5MKg;+=wP&E*8{E4W*TjAlwjgfBxppSHGPdXb zadGcO^(h6VZ*ju6>7-9FxU!=0hA3A9&k1o2^m&^6=sbSb+b6a^{b3dSTgCrGE?xdV z1KToGFWqC+fqmTHp(wd~;<|Y{vgE1Wdzj4-teheJ(ojiF3Uw2M?4OOWhqaY zcQJ&~B674K3`yAQkBjoL*HD58ULe*nAB{j6p((Iul(U<45j101$%^;XZ+X)&Dcuj+ zh24;KbJkj{4$(N14~uO@d(x_~nur)xFj~N??oF?a<7~Mvo4Qe`i~@BelWxdFU~Q!* z{jzDGj`1w^;|=ev+rw3?%cIErL~+&|0pfDyQjqLVR5-}5f8OIR0(bJ7mtNYK z?NDc7$JnGEl0+6o-W}icxWj~Yjv;E<>(QbJBz&&p@}1fkLxJ2T@0&E^0EQL%S^%0z zU-ay0B{Jn{KJQgM0fTXnV;UdAz10nhnbgL%3cxneh1SX~2!vhrlu$+Yi&YcDYjY)M zQsX;)M|G}nEA>wkUhC5>B}3SjtkfRP`Sq}8TMt79R%3$RDus0f;09PC8(ChfeD^N+yOaoIEjktCg| zagVVI4sNN8LaqH|#;DN}D{p)7h%J`GMj!^Mo9XTBG8o27_iHWXX;p_NV^G;kKmSanh>hInmYF4NKyB++{yW%a=Ot;; zCgJG_QUg3;yTr%C%!0k|7uaR3trGTMzWVsmKoP9nJh56`eJ!esP%DD_NRU8UWsAq zyJP9vmD?8Ec$jpdP4yA?^p;wGfS)uO6EtRPG-9v~ih-I(S{r{slY-s}uIK}mb;wji z%z$1-G;B3$g^XC4K?^PAW%|#e7xC<(m!p=Xz$zRLKSW@moatFu-d3Br2x)MPl3$*f zW1DSRN-|2ZQ7^i4%vq5RW=uu>M&;jPpnuX=f2fkW==PBto}>H=@6pM3Vv%yB?GBQo z!I!H+O;k}oQ5YkuGS1VeTy6fWdM4-`oPOdzE|v7+4_Eu^itkUJeR&k-752;C@f&;8 z2jp--OUg(7sKH*@j6k8s#owqx_$bgClq2TTv)HSL6{c%UtCz4oIsyLhh6o&1Eh>iF z5j~8;RZdefn2m-|U^Ixb{W-WV8YZaw!hMGpSePEmqTsvov2kmFq+2;DHVN5ul-(WJ^}{%~@meCc!JB>7cm&PR!{!V%(DhmQNnnUOI1L5GSahMBtk`dH zwQEd^Yls(i@;VUY=-(aB6_ktFI-wcWppFyo)e zCwi6Q`ne<3w|I+ftbj*>^uSs#SUI0$!9ZA;ydPpC`FNCaOd8B>==?PwG{@`YO=rYb z7?GG=j_O;e3t1kmBheFNSW0tSRwB)7o75y!`=Sui`BgNPSh#$Wd<1Bb7F~%RiPet# zMs?dYZCr}0^OxIv{bK8e#@Ql+o+u$ub0DzY8Hi3tv_)+tO!82|a>H+o-a?$o{OMX= zL1P8+?13YY8e5}*f_aPEl+CFIc|+Int;K!980hx+WF7*Nv<%B93QQ!bSqh@6@QEfr(}`)=ALD{aF>eh~-++`2D_)FJv2Urs9W+JybHq zTPgo(6oSOr-*_|rT7>=KolC#K&$;Qv92A0lS>abtFNltOrir3_+GqPbAJNS38L9qo zwZEzOeD~(9!J z71fPzROQ)8gg3s#55bmie%q;@SE4`v#drCW>I+4z=SRYt#C<@4i?Ez=ATL%eKqhK6)hNqB)`CY1dz)tRD}{M4n~{@6_(d( z@PVu&~hM#sj@KAhN4Kvy64)p4> zLxJo^_2bKh3Klm;HoUI`2r^R8;sK$6__p%K7ZrnDtKEQV zu$%uSXxGow36B#Rs~^-y>?CfR;7wi!|2yEPDFMlI#=V@?AG2o&e`3`0FD_ab4ffa= zK8WJK*Ilw#QhLAkSJbO^5j8{UMPQ%PwY;mjbmPwj5rv0+GEMt~fil3;i^5VU7a!O_ z-4gUSUU_A2r_U}2-KY}|XL=~(bAh*AHcpEIb)0Xig73O!y0l(0O-tXfUM#!eZYxke z=}&KApSKV~xR>^WpU$1}sVJmOt$Mk-QolkuxNOZc&kxTQ9Zv%?ormSsS$x<-i?Rt) z_8tELI=?IDMHpc2ynOp~gEId=9-o(B@zm$VTgRWQkH4z=R}t}E{5e2YdF^<6`sBrD z=IK7RyL+dH8)u5oe)}%}bnVYyYC-TEmj@4mk8M6$im$$w@62loT`;`8|5E(Jf@BI^ z5J*TJtJoEz&9{V!GyGszH=qkU>gQ2N!|Mu+fIKfCgXlE%>_vEJmnN~i=@6JsD| zUcQwkzw0XHv?IMG8_yAa%i~kp$os0nKq2j6p^`sgC)WyF78(XGEh`jS+*=xMFIw{3 zPmV70i3^E|A#!6aTMI-4OVTY{gxrzhVhZ>6^0?au+iVV^{RmuB zk0+#sdsaTKgY~#GM#nKzSW9z^#4)ieQR}!rax^=+<_t)s(tPi)2KW#4s?x+Pqw$SJ z6X{bwC$~T5tpxuK$Md5xk=@7av&EkSi3$Oj%2 z5WW1`qKv{fym&qY+64S1Z2&xKTy=g9;Zqt&8$whqNTPsT8vV=?S+y8X_>}#L_B7}MQ)>#GEX{TrCH)d{$=s0HePC^E?K(@}w8xRf6)aj7$&c0bLdJ5_ato z#iB+TFg!ht5@^bhrAGyQB%+=Vexn)*k`JM9qG zQLheNBIa2V-7C$1(eTzbq9tu}Dzg^~RvMwzZj-}7z%-B+N~R!v>CsId7;(g~oLajc z#-|)uV=5|cmdB>)d6&=~eo0i|^WJ#v0LepxXMB0&w1`YWEh$gmH-<_quK9&MTxf9o z_48b^!kZVXS{*qLCS&hI^2CQ6w``}K7=U9SR|zfG3~wX69!(8!b|Cb_)aud8!sJK- zb70g&dTWG2=Tl6wNQ$SBln5Wm-J+FR(722jlvdjdM%NasK(J_`R)bfwbph4!q^ zUV|r>lBb3+-q7UGb5^?Bl`p#T&4ChyBQRR;#P7+7aGmX%Zi}@!&Y-v1Rr=W9Kr?qO zRaGD%|J?wva!ZU^8(B5+IN0tDC0i4tI)Fc2KzRmZTRHlk^8>OMl_34&j852E9R3T`()dRJPN044$3 zfR&(mH}52!r)_jAUManTgfFwklq!5@`FXvn#n-Kwgcj? zrTg#Sxk%iGu8j5x1vY7f&c8ply=*H*jV6jbtOecAH3p)*3mIeEH~E_OC=+fW>yu5O zRV%KBkh)-siqW>V*zj@4`8BR8GX|LtYRlAvZPOX|ZsfuA1SbWt%P3`U*o9V?gdjB3 z(>zhWbt^sNdh`Oh&qV%FD&KbtP3^8pP6ttS+MSObNnS?ukbWTQ`9PM0WyN*y4@I8q z*N6@B5xc`=?~>zCwWypD%hejuhlTc?S*wn2%I-lb5ttazNJ1fF8yaD$1aol-lkjJY zM1;<}*_qS{7q|@MOb+ZAT<}v^QxHe{NoWJZL2uW9M7k;pq;#WrVgu+Q!6@aE@ty9K$|cII%dhdy{IPYf6pn%O#a|373Pf8 zE@Q8Pn@&CbF78tm?Vy%-Z2leB`+42aUC1Cr4P_LuK06W#NgGUe=`MZ&Am|M&lvvMj zC`4CvntCu*`No1qo(#xcDT{A^-bR5wv^q9!#Gke+5lUymhECI@%ZGZiXTG>nzaTu_ zT$NN?S6jKKx=7#}oEQWZJASp<4APmAUSqF&%9YwPOO2sD5SJvIkeCKEx+@9XJ@ z_7cyq7mWg6;>lNY2%UUga;P`^5^~xCHeQ0_rJd) zDwUKwW1GHvPEU|tk?gk73z7bkRNO{Z(Q$G*h=eObgqoq0Gz)KcNw-Ao3(WNFc(dkS z-v>|D-bB`3cW?PsU9My^#%dRV*7_okV)|BnpgzDfp5wYZyZcd1gQIqpWC+pwm&>BI z7P~fg+HtZ2IM+E@i-C)u?8!2IxZ~IwH{%X>xMrmyUiC4U>|{BgOUc-rgpBz9yk2Wn z(dM`l?rVS7r&)wZsP1xQszg=6fTw-LVuALYwy17+4(xFfk;f!fbyKj`sBVey)iv2y zL_>Epp7FbP>>jGM{X^y)8OKXL;`CSba>cEU#EEJ`fox=6*7Q;qe8H7*hJ$*jfrKKN z<(=6^!sd-&;kpUdq@4~p(TB~?Vv5IpkcJI{S`sDICOpxJ8VE#bTMdMNuodQ=k z?MA^-YV`ayKTLiR^PPCHtNo5K09fgzM0saSZWSiH;Xc`&f`WU1$4K_OY+tGtgV#KY z^b9=c(2K}ER(=Be7Uhxr>Eh!Cj0;2pez%!zv2H)3*ch?{dW{`MMhfL*&N)Zj( z_>Hl<_o|c~kS4;*w~xkSAx4$Bd47+o!u{c}AH7(eEi_0nYTFGuU6NxxT$3m{-Uh}M zLZ(i-cO)NCd}8Mfl*QxAj>BY!)qGxuJ?mRtdKH*XWV{9|{Q3+d!sA)-cu@vAQ1pJ} zE+rzYD0-A*xQSt9t;_S!B>HjlIA`>6EckQ`SuQ9b_qjoGtDY7I9_%fj)lkOh+Rv2i zZS=DnK?qa;2;~%yL!g|_ek*qr6b~TmGczlk0i_G zGYU=CKm;W@S0jvUH$Y@nLzKm#xZKuUD;^`2Qe0=$@=;w z?&A<>uA!PM2Kr^5!j-n%*%6)Z&bD!d=zqGWof*vbvGk_7@JEzLPprOLzWgaBY6Vsz zM_s{eARl@knb6&7WR6}&KcQCc^)UZ%$T4C|#HcE1R*Z9`q`29}8~fBenCQZ572&5T zggWn*x6EKk&?}oDYK-@b%1NB>r9P7U{B0Y)PLIx=k$cHr#t9$+TJbt-u9|M5E?H+&KToKiJs^P%fxJV1W&QW>0ti!IL;y(JXXJK~Mzs=D}$#;3bc zSJAXh$0k7Zrxudw`IwEG?D^UvgW?*F| z9PtC--3QrTfiODMa74lKg#=IP2+wrI#g)kU6cGb!{ay7M3{Mqlu0Dc48d7r+kx<~Q z9draDzSti;r3N+595TqR4w8+7@n_bA9vRa9_-0=9PGtvmGV@Mcr4Xc zo-RJjeYUy0+ZsyG`bcsqbs)pFR7QfcBPD9UxdpSD8zqhHR$-mchDEr6oYcTc({*{N zmWFW)rc)WqmIg6%FG9Tiub0megoDC$kbH*<0Zvs~8(0r;!DszNrga;)oNMu7`Sr!o zZ4er@XOR;bUyJvO_cBBWDD0{6MyA93KA5~FNw{T0Rt?ksih`l9q(*{Mh3922sIjev0?q>GI z6eUqs*4^P>p3^>WjY*D=kd(m@#v;9SBq1(+z zx~#S7r_Dmuda)PfP*Pw4wn{F!=1Npb|E#*+`zqOTI^>*mvND`b59X->64PU9^9qHh zGj{Ks0UF+l=n^1hH4Mo^J~#af_Wz0LT=ot4$xH`fv&?_yy}E(!BHjAY*7nFfbLMM_e0cbrTW@N_H2f16X|t|J zz|mgsgI&|F>1t-v8iIw1Z73n&a5|>0?*4F~iBsEhv}*T+$~6O?Fwx{6WPnu=ciMvG zvvt0?0fff-WP@_`zWHkywN1xr^r*dU<8|iBcd^&-|t)(%1VHJVvc*N6LY9Up*h zI$9fK>p>St6mXuJB?8@zA$-V@|8Y+4UhVgN`kU8g#M;^B)(s1^ed;E>1I#o7_l26; zs_1L9OJn^IRwqNn7^~}{?d|~Nmr_g5BL$Wln(O_t!bH9p33kGWD&|AI7n!dPb5^;T z@w)iuznR_t!iDr-xBCAniT3L;*Xmhq9&8PFMVKH zZwcQEvlVb(4(Zo{8StB!qvIxp+AZgJL2|~iuwi_jXNPgH{=V;C&-0|z_n-wR zF3>hsOPk3TM*!rp{hr%&Enc98UZ8ZZp{s49%w{L=M`~Id%z+P_+qWZSH2w4=qrLhI z5RY)$U8f8R>Tk`91sW49{3I(@9NX5FWNI>z`Ld%lyMs}+u_;^xmlnzugk^_3KNEl7 zd4CRr#TjKhCurGlDPhl7O?I`qU+GrQ)5>D$3NEQJW3y_2(>8yVr8+C{Q8Taz0Cgt} zH<}{@NGus5$cqw_&kez^r$`nKXnjJ~X`hSKL)!K|uq>)0Ks&aYbvi6OJs}bN1lGfo zN8VV0_?rpSgXLGA1Av#lugt` z*bXy~+|N?E6NtTLZWw?X%(y8p(;+xr)K;E^R(k4Q&5{jzKK~=Qp~JcNReRPp(F`JL z1PVO8l?YAIII2Zdb(+T&c|$6w(W*r^rb99%Rut96GYxDY&bYomJFiCn|AtNae=#-w zzqSYdtEhjtjA=Y_cLr7wW!G+_`mR<5R6a)6ES4fm_fRZsWV=VJ163gKgCJ6}pvjvi zO?4+1m8UN}zCN_V1kzFK%GC_<(oxkDQpy(V#j3Ba3y4+$)9m$yB3CrNsh32iUQPnA zSBhhMStpczAhDtRYwq+b%-o>J(T<@)e0o`Nos*(?gYqVK&|RVSS;Mb4upni8o6&hR zEp0m01H76w$3WeC0#>eXc5{Z{MP1fpvtY#QBvfCdyR?Z%H&#R4KREAWA>=of`EG#w zYJ^&ilhQkHB#)*#z?^kQ5Yy{?U|0<}It^$=6P#26-N8&!JRx2AeG#SZC zowTGLF&I9?Sw4WP-#a9)uxS81RxYJtE_j+S&<1r!7}e+iob<2N4is8YI_65orlP?H zvq-Mv=@m5$^Kn|ho-+?{l-fp!M&|I!54`=Yk%5wU(!IzQTN#w`^u$Nu16nL>4H zvB}W&w8aH<3LBI$h~1Rzb8xcbD_nQm7~eKWX`7@71ynOqznBYP$vxYXXO({y0T+j8 zLcBPg)|QtpIw>y|24A2WU!aa&prXhcx2nV^Y8$&k?I)~+qLy3nol`yAvN?;8#VW+C z=-9gbUL}Yv7kZ`9Nwy~j>epTSUlnjcc&8S?Dmkb*6}7F=>J{dP-Xil>e$*sx@?veU zQ!OHa@!p%gC=#u&p(N~EBw2hVAimYRnq`FrIl0K5>&RI;Wne6+F(+-xvXva5(}d|ic~`U*_k^U}=u`pCCj22`Tz@SU(Oxi-}Lk2zK;;(LD% z(kEc5o)o_dR{c%9?*(dEY4IU`b(srR*A+D`Z@;!41X#(_!?}MolZrG*4>WI^b$B3d z5~69gCPz}a5A-`csXjAqF8v9Q1?bfpM>G}lIxRd6(T5U%UxtScMJ|GOKIpOJqJY6{7qg41?_FOoGPP3OSMhEg_E_5eDsqmf^etbH-p zpT;51nl5r)%uJOwRAHqN%BlZ8R!_LTeA8^=YeE<3^+kqPb$v?hg}K@ERJimEpYwF? ztAadcV_Wlj_=UFf_k=?lGti0!r+`us$DaB?+49`_1Ruzgqw@(U+fBnr92c=sl#Qvw zZ}F_Nzk^*bR}K`%bRPmIq>2rMnXkf&O*C6jM7k$kROXY;EgN z#vP0*e-{4?h+|e)Ypi`eRbn)KY#*10S-&6DTwMI*BldVHh|^873QfMZm1H!T1W zzc$>QzNSH4@{pGv$5`|{p2Y*y<86>`u(ClV{EAV^ju*{qrMOZLm7WG^16x#6h$y0$vuq2EArzh^A$I+8JTtw;c^H8tytt|&QdaRK@(dAqfaRw38Y{Wd>rk>< zib_qHh<$B2W38{Mi`i~!cRWQ6$1Unn)l=8006tS~s$$n&y{4YylPG!n9nS{2#w9{& z#m#|pf>?4h@n=%igJR|VxRWxh__9zh7ib%Tr{eSG*YMtJeY(D@bN&T$cGkfk>?&Ss zHV#U)MPeQUyZL#R5bliHn?qg|i-i>eSFN!>Jcjjdk|3W%k{6fRoAqd`W)hk;FC70_ zphnyO-Jr+6VdTUq{)ybYKid_b{(78baQy&Sn6U@U_7Pd~s@5~>kLg>fMZ72*#M;)u+H2YnBCFc{o)N_UijkVZhzBW=S=w=Z^^%QcyS1+#e^biBj`huDKaY=|-4Naky zJb=1*KSjA@S)SdZF|Y>!Qk8xsFQ>{g^_u~JP^BSWrYUMovC^-kjVjLfw=Ym`kKg~) zxkFl`D`NfA1b8j`toBk%GB)+vlHd>vDb@adr{n05C?Pu~^NB2=n-YHOKY3oG`|L zse6#yAgvA*?C@nW8r95aNw<5ZWnAM(o{egwVzuHNIVE#-ie-#EnjrDb$=3s}a#uxX zMHbp-fFco4<~+|SkAxscs{-`oeZ}Nnc7ikk#J(A%y&XBzCBJbC^T>IJd(j8ROXAY z-@-d_2lS4`ovj;&V&n0$CK?sZ8(RW+nI{dks&ul<<|=1TFO!Y)uva{GA}C2+Xh|*7 zf|o8$SZG>&5{cnDCAUlBy;JVr#ycF;j0C1>XT14 zUaHRCSzYq6w+4X(tPsCQKVZJ$2%>Eb)|}py#02=9fWS1#bu)tiDf^1sUFBF!ng-jj zRC&^fcgAx}uESeMnS_BO-_GJV_*Cfn!p2l`?9FGYaBh#qVDeS^yU^)pt%3}a%Lluo z!`*4f_u&ZXmLLAt%Hds5w%7p+*p<@M28A(uRrojNjuKpE+nxDg+P zw%=2?gb>}0u>+J1l)j!v##PuFIRB&zTp*jH~y7R}xR0e`B}meSsSF_=!K{ zoqfk=((~XGd7|sFxsf?|bJy_nEJ#emh;nj%vHIZ3BLGDr6!Smk`hR@#x4jv(@Hggq z21pJh4<|y)mKsq@<`iXPEyVVUnHH;uZ2b+SayI31T(l4MF1OCAvU~t%SXOh@s$ZkF zwrfO6P7j#VubInHyJClq6Tjx9j_IjNQ$|s=J|P9d+{h0z(%4$LuP@iEm($Mfv#THI z(@APod%$Ar1FFbMw}9lAjW}^@ab>yADFue{l+1z>3fFH}e4zy70V~R7_7V1j%8BZ( z`&%?MYBkFHuUff90FZf}TGPQRoj>?KllbK6_n!*ADFX@}k@;Glgx9zY%r@mMI24&r zgaUI}LTg5w9nVLV!Q{Q`OhfE;3z7*5^UfgpgoFa0Z`UKZvzDw{w*9yXgzU&{_h_Nv zMGzHWc#0QV=7*o`pnjcet>P5XxH`#6^92Z@HEBGEgFhq6i6>L8@XB{Kx?E_AF2mf) zJ79;Lk`u{<{vB_oc1-b|G9~wCUwp8CH674*go|##8Wd!3R!1TQA&#_4N;n{s($yw> z?CmY-q$$|QtOl4f+OsPSPMc?gHK6c*U;nLAZ%)Co&dXMT#71=)s{<@`ih9z}lgm%I^~B@2n!_*J??f!Iq`yB)$Oxv?YQwm$;Lrtb;ygNnDp;Lm z-z2Zn zalB@e>=IRIni(2haB# zoxL*8k)FpU)%zFYWOp$QCmU-hsc=H`S2%dLWbaG{h_4#g4CcqM)x5 zpBtpj2&5tIsAB4Un%^zHLqWX?7=0+9vFx2GH zu7k`rs3KO|Q}d?ugpxqkV^Kx68&b;Xk%lwU7!Op=MRMlb_Y>^eX8+wT>wUum^?#}r z{`2?K|AqhXw{iIzD%%u*9Yx{SXtYD1|2FocIejP4s*1t_%OmtOHReI~#H>z7hD~#P z*)>?XMD(`sO?W#L)VFY=PEvE7Vzcc``E=5G6t-bHuIUm#@kMu83Px-!5^nN3l<%;_ zmv41qQxrTBvBoGaxuK{Dn*nU{EPS%iWjt)h9-1N^I>v+ZTIx-nmixTcQZ6qFo64j) z5g8t)mII#4YAvpnXIU8|J3y+MQ)V2yMe9XH_x3p1tql~SC*fPc#i83TZoM}r%A#@EGS6qUR5(LZ@;U_xH z?D`QcuJec=D{u)c!`-+fh+h7ERBIKp4TseOyDzieVsf22o$MuJ$f2PR#?f zu;uXqiaKA^3HF}L_TB|D2O2sLZJKd#eWYw+o`;Bi0itBP#{?`| zVQiu0AM_SC1I`GA{<3SnwR`hVMko~JM+}!g6YKY1GcjFH&t1#6F~4K&%p(aGs}eDo zUg8ZKWHxJBKqcuz#{$NO zi>qEJ0MvF5f)drS7U7ENt-w*(G$Jx7Aq8D#-S!~P#$eiwKV$f>vz+W)r{sP$VHcTm zO75s+XmVIbDp4=%=<8DMbje)A6_WFc67gmQc*8#IP7~**J0jpDT-!kUiV9LAvk-)%oqr&Bc2&E$4B4R>{X}*0kIN-M==k?c3)UMxPW0wg zx;yqof-0>_0*}aHm!jI+NrqRk^y0h=&pv#W3D-dYKu65%RfDUowV*QYpEUlpM*k*5 zmvqYzgdWlhague!vK--KqiJ-rY^+U(z zzTqZLMdk`%jwKv8qP*GGvD|DXZpQ$tB%WTKr{y0rQe-fm6pem-oxI4imZ=>k-;Xe} zaE!q^H7bmK4BQgDw_@24{J_ctHMp)gzDB-0IKr-?d4NENU9(tjzjRz*ldUE zh9SKCi{;CM%2rqR3YKlEKWT>gr#<`cWxchpf<81@ZV=<*7ePg-nnMZ7#8j-DEo|CD-}CuzKF!(9=`DigHKfZ&3-gMho~fce^fTs*7C^a>51ElIC{rCsuK3uxH{+NV?hTG z&T^W6#nf(R8qCY-1|_fOjoYoiXrR7ScGGweGE)F4H#864?C0sn$8RG2+4+<=3EiQ$ zY_a3NH^XzZ1+?iCO729BR(C_(=yjR3Nsp2k?#wSaPKKwGSx(w5PL797+?3y^S4G*! zjK3#6vZs|v7#pw=Yp542Gr9lvaWfjxaw&X|HPF+AN>$O(j#0t={dQ52;qSWog65u8 zWI59SN{c=t0~7t20m!Nbeb4?T?LabLa%U8j>kPh9V~LKxJ&F6qToV??uV!-cN%QBU zX-uKQQ^Zfw$_5id2;g)cYqtSM$ddbnO+iYKI z$_IKzm}Pp~u{8pX0(KG~Di80TJ_DWF$MNBiRhCAgL$TbAdW755+=(SUN_W0%X>Zte zn(ZkZlbg_5@zfs<+I+IMU7ozJ5DD@fbp9&NOW*9(Mch3z`Nwng$EU=ue4@8 z%WqkQC7LIhxd%dcLdnn=uj4#u@~M>4Gqz=rD416VW9-0#w7aBYo!21_JCD_j>3mXO z;}DY-7KWp;-|3LUg)W6As2TN+j8p4R5qD8@dVF3W(=ng6?S}e37;T+7#B;jLMduuf-;C-Lq9l}e>G^rmq9+Z{H z|Fy*CWG7+61!MFEU(onq+A;B@v$eN|YY+U5R_;iFa__>)szg*z`+`SG9d~OGi1Xd^ zKs8WV-pexrZHj}nRfPdZJXpfU*xRZ&d!u2nEUGf;!SDAzl=*#>*bYeF~TDYJnF zL(EiQu!Yy55w$`h^~Brbf8#V1*?(?M^2k|>p)?mlFXo?OJo9o&!|h!KDrDvG%vkPy z-D%L6ff{wVBmVGwiN9ORMV+V7Ev?Q#2P{uHaD=HsF%%-y7{d0z$?TnH_)s`%lB0Aw z03saTa*cS-Zn!QKQz4Wo?r5-)QB$nnpsG`nEA0QJb4K*Y$AHpm>*!EF{XzUAXP?WJ zD2yo_F|?+G?n7$7`E@g+c5pwBKejjxUj3JhwmsoWqNgbmW33DA2e67FxO z)hSs-i*SYoi+&(R$p~vP>R#7G94-gd*Yt$8SdkMh2*UN*0wguRZGIT_JlNwkvy^G_ z%^Hg%+c_CRwSPKoadNLjmqm=p9Z%Ei39{2B*z&9) zc@;-BmJ(Af?3UFLcu{e}_>`TJuX!(h{AD6COhWa9IYYaoG5(B28sl9;74PfK^KKFd zhw{F>Hw-E(GAwXr-|NfIe1pJ*nqEqw$7nN3s|84#0OizklhNYk)Y4+D8t{h~+x8SS z)xJRBqK=pcMm}4H$^aMe3j?ux^F)S6ek#pYSGfE>EE&u(778yN*Oanq@f0Cew*+B= zrqxbbW6o?BK0$@hPncYUC<}s6MwL2N$cnV_VOtf{R?Hfz(|o)VVyS*Al z*&i`=)Ch_bJ|>{`TF?k$B#N%7KRKHSd`k7B)>@cA!?rdMqf$c{{7FQ>UuTE{Bj}6g z=fL337q5tmjeqs@mFXs9M|hg5Dp~f-btWC}xiKeNYoM}oxFjTsFhMN^9<3NxMxF^M zHQvGJKKkRuaT?Rut9d@m=d*${dGD2QK8#QMi zKZ|KM|7jB<$I!i_MOA54YR|j%T~a>9CANSb^`4R8wl^l9MWnvU#iMJ3P$-CvTdSvB zkHbXeW-ljf+?z`ZZYzcs03%;DKn=tihT30+4+Aqo&mWRS7O(i#REkWY9p@5%G z>f$}xWI=nYZbo(sH@6;g0}J(xa5P=k3yZ^~XW`ex3r;73cVzhqn&$5&GdDi!h&=gIOyu z7992}iJ4N49iP<{WD3lN>JiEOHs`keV6HE~zP*fBZRsInmf&2T^C7F{c2*%QWsD(o zh4w7JHMq*`*WKo#_V-omdy|BQP44?|zyNl66ys$9EF=$fi-v(`MU`fs3;YyhrUxcb z&`Cbth#s&6p(slMZB`v6zQE83ol+carE;FKjl{nUZJ*b6O03y{;gPig?YZYiKf1OR zD;MKb@Xlo%+QbSc!~FpQk_HUe-a@T?7w#noMV?YN3*obmU;eU_Yz_$%O33F|oQ?i7 zowaI}y3f~;yaE)+!b%|{f^5a2QWOv)N4eejx{SSEbqDFsh3_dVVTeUXM(*zo(a_ho;K5 zE+CgvLzf$j-qH@p9de9y15|>%*aej6J8@5!_D>txs*=*&D$m>Jb)I$GcLO{KHjZ~% z@#n~bLLH0ei2|p~OJ5h7bE=bc+1y7IYE47MLN&zc%biunD70O{)T>&e)UbHi(?&y@ z6s{jH-wTZSv_7g`n-*wYo4!3fqi*7M6U1b%q83==7oZ$3ULCwwJDkE(HeUG+cj$!|c=+Dh1gWU}#BzHcurhd$GFx?#Ho*(9>SSV($rppV;fiB6ij01OE1V{iPtH-xpGcr_a1ttr@62yj_EiQSUciPy5Cj|uvd@k-Z#X_C zR3UwLbNu3gc3L5Ue+sYvfe*j`cVVVV{dfSCEJ9L}Cu)Zs8QZ}5cL4YA`lCHVk)MM6 z^y*zMoGLX+Rq+);??^GokIjyDcCDh%-D?Nne^)iN!%|NEK!Iv@H`T`>iP9l&JYW)G zZKDsGS{dWW?QmjqOz3O;p2d9kAkIxFYpo2qOc!1-?&lkrjORXjgly}Vs!`~tbz!MQ=lBR>o7SW zk~4+VV$QMd1FC_iT@lgL!jw0gm85&px7K`}qKRZe*_5MG*we^1H0+~Z1O4WWIv zzzBt8`{kU{k;9Yz>uSD>?=^74=K9eQ46mOn12kFQZs*Fr_oKD{+F|H+CRXpiQpvEn zd{w9l$En>sWM%`~8PUz9-A(izr{K*%8GqAbr&Xt9(Lf#7$siuy^h`nHIW5e|q!;{b z_mFF?m-zCaT$+Q$my~qpEvH>JOMC1+d@O4L?b#OD)EqSVk$N~0u9QJ#9)oOcnUspP7xMAv1lZ)Aw6=IECUu`E;%4(Vgf1O^ZVW`{T7WX zK?u2pJXkpN^wDY(xn$XLW}N?YTtlO#cZ?_ZB-QyVaJ>r=M2V7q-?yg$ym5M65Mq4cAtnYc2_Dq`NR8M~qcm zQhLjdE1hv1Td+0YbpJ_dzrXcI5?P|s7sKsR-}2<&!lbJ6pvb!vm$Z_zc@#!DV$*~KO{Bn!=*<#7)rQxHv{JQGDV7LG>60qR zg1F8yU#n~~sl%)kiMiYF@xLHt^V%9|13A@w#U>U;dYneBscxGoPK5?OE>Iq(?)x^B zLTM3U0hb$lXcdA_$f$fB`A2^NA&VqSxB=~$TmiiHZH_6xH?7j8LvK7{^tIpG$nsJv z(I4ov9`NDu45*Du>JmB^??d(2)yXGsSOwTruC{Sat@Agnz7-4<8d)TTv#P`8Hk zso4Mi%)Dmn=snCKmP3|^iPI=SfsvF^dwRpPyT zqX|84JNxYd3iEyTTA^gK+_d%wCiRb#v^^48haI@ixKn5w87&x8Bc^!IEa(L^Ce$5j z2QqN;X2m&b3qGVFH#+P<>PS&`hpVfYY4nQ)p|n&z+os`Q<_s8!Lo7=Owz!+X;IFH5 zKThl#js&?;g2JiYY-u%=n!vr&cs|v-6D^uY2a}3?c5xEU<-xi`nhS-UdK(LU)ls;N zw8``f)cMU+S${<%kiqhyCi6Tl5n~(1-xA8(>u`z5^?tB1C&^Q)65i0;i;8$;Vm^W(KiW1PhZ zw~n^}!@MpejY06yot|CWd*#Irn6Q~hZbK~SDR1!|FTt!f}(KY^)hV) zhhn{84|KG(-^O|sI#slhLkUK1{R^hZ|EQQr%mNfc~Nm}H{VtSSx) z*_3G>S`%S35kNeyv?wKAm`6Fiq))1yq3_)a=6vr#+3#){&Z8X%SbHC{?lr3}p|zoN z-tBI1reTiiK^h$(DVx7@aZf1ok4X-#B6WZpZq;dqD7>+VLvt+Nt)!BjDV~2E zHVa=zj?t97oqEw%ri`rxOD1bIZhOrvh#eN8y5^pD^DXu=^(~NDB36el99|COgGSI<=qeW%o85|O{<*WtL@ zTH@N0x(lRr4NJ>X?+VlJZQb=Mo6jx|vU>8VlG#PwM1))8lEO;biVVfc)l+0j6KeQ) z6Px<-3W+!zRe61SQp;%XV54eaKF*YNG87}cMbpTju{{pMI<>9y+|AksPW{AT>x`}q zdNUqNrGn=WfvCE_pIlSBVyS*rx5JFwJyov8#hetLCiNb1|GQi|A(f!0GN=?hr5(&3 z(Zt)UsF7YONuE&D=`n|~DZ;8vcWPT0BbKF#pl6AIVpa5By;w}zM%7oQsu&=9M2dQ4 zlD(Q}pC6N1R*odSG-)&C&@8R;=LtOqZ}l>J+CBy?zj*(lELQyxRU9nJZu_o30D8 z2yF>{ZUj|hM&Rv2$wEYkHCJpY_EE7SoMU5`i`@3QuPJIh%JKv5$1OSjHzqT>9k^tc ztT>HXs-pMT0rhjA43Irf>GiS3Q7IY2x`AY#R*OH|qMZ%nG!S!h=4+SR%aRbq+;Bds zvnmAVj>mlx2HfMDzwmF}Aae5SaA#M}3#11_n&Xz~mf5%TDsh9bg0o*{=ls6Y3b%;( z&=Zp{r=W-;_k6P2jSQ0L1CMY}Y@=u|{t|*3q&{rdf1~t%*Y>yHnFEpBB@SokF;Ck- zPjALRvfdPN&GBp$qW%jrFf5APJ)~;VCi-?s_LUKXiTDfAewlUTTfwDDV#jzo8`eW_ zGh}6$cR8FEQ-(g}KYHIe_vul`+db%Q!ddvk8uRwfo|$9_vRwXtwnKzU_`SHhD-qA> zN7TivnJ^(lPhUAsd4PUOaKIczmp43JVaA9(LG*#$LVj(dy?^4g(_C$-P+TTcgld*e zBt4m8Fi7D`8rBk)8G)Sq`<*z}*oq)D4fDJWcTy=~m!6$U>C3a~mHQZ9F8sGv(a}eE z27OfS$lS($hSBY&XVU{2i?`EOu|AL!z2{AFpu!3tY7V-#;YZnyO*#4~0+*oL4CLAf z1?8l<`XprqvfK8Ux}q=eWL?w2zIU5m$SD0c?MXw*r=nP9*%>n@Dgjt6Ncy|RJe$9> z*#abux^$MTK3q`NlMxlh<>1*gAD9yz5wJ)O@J$V`>9>P+Wm z`q0^tJai(Gj=>ggwVz4Fmp_+E?@Bq-!-UE1WQ#XY#ibK|X%Bcvs6EPfkLUf)S$^I8 z$tAV#1^{<;yY$*N1Jl{?rND{sH|QQcIXbjq9>#If`xPL{dAOH`ws zMC`Z7WNlt>zp*+P2>4(U>wE6%5{|CfRg69a?T~#&mobi`%=TU|ER%MSn7cq|f=*$ELi4Z%074#!TtI(yLfuFxR&z zP>nGON!7X#Dg8MaGTW>4ii;tkTJwnx>4D@J^L&byb#f{ln!*0?g||?aQ?8xZV_F(I}bIrd}>;99S7NT8Dwd2b=P zxR9X`@j+3otL%e&FTi#9rhaf3;t_MK`~DuA+AqgZ!+ZsPV(4?8HUBaF9#&ym0{cK} zi|d)j`;R*Q$BLysB1N4Bg>|hN{14Q6{6Y?vC1lY*8Oo=S7sGp3lcmetmAaq!M7{?s z3t!0=`*>rN@`Rvo)Z0*^QytZ*kifSM=Ow}-U=(%_V7lX z9J6etY{Px}U`i0Y_rPGPqFl@&*-L zSi=LGFmB)WwSQ!2s{e`>AB1+PKI2+2XP^xC80V?tU4dTjpyQ9^Ps@iEUWr?iXVP-* zzZ}GwEB6yX2<^Yw`NE?a`d*K2ye&2LS3CyDAi>s=())hWEkq4Japh@oxwT=B3Rayq zr>hh{a2hS3sZvkmCvj-VArg5~IR!=ezHCDD;LXa!j>fe97e#}iFYOxZjFl9($fe}a z<_Jb=39czkRCRFa77Z&k1_`nq#+0)#DRHVChVrq46a(Ms6(6$vnyT?OB$;_49^$Az z_4OoU^qX0s+hjQv@}pp@PoDsjxvqBMt;bppc{OfJd!1{Y&8$eS@9xK@&LKbOn~P~< zyLU=NA3%6`^KBFhC?XDA2HtkLemB*{MlFYay798L+e}y&7P??cIOhG7jqbud>iqei zcI<1m_CEi@ap9^%p7oqILHOaR4187t$wcZ^H({e z7=u>0hccnmkVbd*BBIQ-Fl3?)eVpr-GajG9qQPD(Kv7!ZTaj|%K0Q8s)D^u&!dZ2{ zCT`NkT6obb_G9+h>EnAn%RT9=2|^N$-WOfztgIo_Vb9g|Q;tX49{RXu1t~8#seO8K zpEo_grqFgyN`Y114c3>#lY7G$gbyqP-(W8_0cM=kDRdrY;r8@D&fSJZN?KmI4f*!W zi;Y}kr&L)D!#RNS!zG4cl;kiN%Of z1Lw2B3HdC2;bur)}uAW0y3T zGw(e)kv1{$PJU?^pM9AXpzYl)SK%KZ zkB*!x_{{7UZxFz!x=rX~lQJia=_BD$ldlGd+cgd8@^(KCmLJ3*qQKE3t?1HhejmfC z(Zc6tURp^^xR&CfRxv$~__4DRe?759OzDzx!ew7(jgHQ4$ZS?)Begp6 za}yp?xTo^H|4rX4@Wr^oOD?k)-)7l_tu6_Baz|0|SwT@TP{yh$a4m08+nxQ!n{OdF zp<$-Y2c|<2Rbhp(k|2N0+$(yvs+;ocRfH`~@cHcG{HE;@o9XT7^gr@nIR7R8g^7jv zul`F7kT>$65%u_j_7Qeed_DDhh1mDcUmBqnVW>;5cmN@fFBI#1Tp}ScTgwi1WotE} z$OCJ`oMR4mt46J|2R;|%DOWFh=Xa}DkX6W-4};HL{o|d@bIgkUhvW0J`lNw2ZfwRj zSx=dHU4i45MtK#+tX6P0Pmw;QL}d2p2{-^3XxT-ZFNeU z@+Ip_C2dW;GP8_KUMXRLODvcVQtHzXl%thZ|B1c{Y~;)M&MVo|BQH~8<1#Z_@%$8C)OE7 z6e+&VB9~y15g4O6mc;;*>q9aqK0y|Ib#-Y?k@ZljAP{`+)eXAmfFLCCtk}%^EsAcv znXlVQjURisdTK06I$Ok|M$Q$?8G=ERDv8v;VlMo|(WNZyw7^-)b6cWLh$m94(w)eS z929eurHJguh~gKCh5LcHwMf&EaxK-bJ0F5wD$W$Se_rY{;O|YRPyq~h+Iq$lFusV zkay|Tt2v!Cf9&+P*>>fY-R6c}KPe3w!+WXYb|>V&&IY&dx#5looW3{x2JcIu|6&^ zhB+e6hWPh(WJT^$w4M}mc1qNCKPNRgmZ7rA6ba(`TT`?2kQOlOL#MqrL>lAK(y$YI|%!iQBHr}4Zc zgeT^JA4AZ%f)h&)-2sUEhX{(hK7}CjvN=&YB_W60@c5$HO?}8dap(1{L97i^qNlo~ zQLi>LZH!gpESRAm-8HN%#*Fyc>ZkG0W6V+xqpsIx&cD@SGtuv83IS0Oh z&`B=KZQ5_$4ck$SPWTF|3dD0_ovNWW3+D7{%v&UGVL&ml*5<(|)MT zgioww)xNp@SS;UQKo=RwKT*fxX1&obyX}@u~Ve8?`PZ z&+PWJYp^u({%WGCZTCE~JeP}plTOZfMwbwN26NW?6X{8bZ*u5)w{_c`uD>axXm3PQ z4)q$<>ZFHgo-VG+yv}*E(!d7G&oO;JNo7(@M&xrl>& zg*To6+OT6(F=mzAvMYMDOF*a*iYQaMpiU~WVc8r4aSp5iRJ-}d-h zEg#QG=Ge&lBgtTRrPgr8yY^pvD;DsO;y9O#avjH#CT0wg=Tp)-~w zXOYVU2ga|`%8NVL@$7!6Xw73?zrBtfgUHpkyn~&LF01k5#srZE$MRo%4|9LCCHEGT zK+}H`3@)=LMGs+55~o=B6|HKU15bdukAbj}L1&0Ta3muekCo#i7GJ$}V3@i7F*=n> zN5)ldl6|;V0uDx7%6tl-B{oUna1i$R@psoGfV@){}c@MMN5qtk&oq-!!T>a5u|(&dPnRr}%Es?J;&clyl{eV*Q_0CuLZ z1@lH$^VtUCN2gUEmcRmgI;4TASiR9qq<-3AWj5lDh_6d0a@~vFH|)f)5j^XP z7)p+vl^g^kf58jyQT;<7FrQIjA`wJ1%*xFm-&*-ZGGLR? zdM`+#H-_v^QC&Do9hL7#{S=%#XxGXDp5j3jqp(tu2L@NTrRdWUO${OW?a!b9l`1+F zm_xf>A@8>)G_?fzzx~p-ij73k4l8dOLizf&f0NXaP){X(GWfLwEB!Q#-!7lDLqa2s z9WgtJsccNlK?O_|)pry7zyxdb{&2QvZRAUh9RPUXDt4*vcB@cPQd|h{CNpI#t)S&cG*e(;2W=( zF$8TZ_Ji17^MFh365Ncq#L!YR!&ac%Vnv3|mhclDlD#F6Jm2M}o%+53I9|y#Ua6H3y4rSlGN{^- zlD>&_Z6$JY;Y-uu;0l}dZ`i3@!9kSkJICL{!;Yy&M7^9UJXFT zrYEl$Xbcgyvy5jnI%#lYLmu>|b7xq?Vj6F!l^zQ`Bpd6x%iIlzYTv72QXS@bN3U@1 z>xy24f%0Z*?uo#~NAthZnpSNm^<7dy{D}~+gaUH>@{t+uzF*u`M{WfEv@#_x#ix}7 zGht(5I&wLIZNczW_@=^Y;Y3PKB<+!A+wS$RB?M!myr%*T9n{SYQWF9 z8?+yi+*W9VQgHV)zeR0Se$HLBX=Q%I3c?RG4*#8;KJLfxinrBg5la9 zwGb9m?GA+^aSUCil-FHea6{?@0rWnN+)JskBWq8BG=(g`Hbt7Ktwyv1Qw%yj&nn4r z9BOr&uZ+}sex%+T%#%1OS0AFcI>*QE-4(V}Y2H3fRIy!rEAEsNwp1&>TXR_)lzC^O z?(ei8~?;m14g_$T8{fX>IkaY zfXyx*`Z4gFAUDBn-ALc4Ju&WjU;QBP-0Wp}W2Is$m;_n`vhxzM>V||cNb(EtpuKTu z<>tHpk)oxmS)s)vT>nsEFPIeQssT7k)+w;b%qLYjC~@V^gMHYtJ!!;e&xKv%mNFQ+ zs|U`jO}mIm<&Ue|C#>9lHb@RvSdRif_vC!+8%;c~V^V2sBbwr8JV%!)B8P*2+x>PN z9>dpGp2g@_zw#~_>-(&bZ!tkqQNm$n*3_HBFhLfTjc+S>&`ZYX#WM2r-mN#$eeuMm zSP}yZDJD_}UDd-MFn8qb5>^W#Vu&ahf70xP5MP-i|L5b@z;}FPlB1XW}`oxt%x5UpA)xZI6pBt@RHIGfF{zIbaQm{#7fn!I9O1k z^A2oXc~Bx)1j9W~>WUoobYw0tL?@drxPR_>xz|D(Ft|`gDw~-P?K#LKZnD36+8F}+ zfO(PyTJNT=s^BAuPx7j>&m@Mu+mLj=ZEC+V--`RJIQ8k!B?f;CHPi6G?ULgwO?m#^ zHe%Q&ydkof-rdz_Oe}E?(Z9VkSq&$ZJLj{e%u>GzZ$kte{Ws3uDZ29YSr?9NJ007$ zZKq?~b~<)Cwr$(CosMl|CLMkK-(!5|taZjZd#tl>e)DEtRn=Sd)Kd~!&h}}LEv3Mm zbn?0%a-a6U$sTSPtpC&w@$Ar1SX@+{5-yG|UZ8U5`*?VJ67fNSano5jQLg>y#!H*u2lJNh6-u3_717$|9bJ zEm_J5I#YA@3RgfO73A=IM(Ie-TxMu1Rkt!071~TTpLlmFCG7Tu5qznIGLyG!WKb=G zR7D590>fr#aHWU}v4TBgXOQiv;9(YSZgAWN>tv?LhcS;2Jr7SkMBG7gXBUqNiy5L_ z@1WGCJsCM88LS!E4Js``({pY`^7+lVzS|ovmY!NFCj!oqKzrM-DVv`b?BXBv_ zxs^eWMvB&KMK*ia>T_hKUc6?S%eC)YBS^I9lhhlTyze)vTFpVAITOjiQww6Cxlb5f zQzX>a*9A?{nO(;KRy6fR(s0yl^6J57wkodPyGIc|7;7VY{Y%0``2NZG*#DLBadQ6M z_>`jd8PP&^-e~SQ2btGM1~{%jkGNN-tFCCKiTd3!-gJ{1F|wV zc%)j_TWY+RUN_i=w*mXA%cdu_)73OxoWGsbB$Oi>sJ)b580bB5_1tf!$!g6RZa#h9COT6GN5!?2exn8oTvua8c1=G6tZx`LelLZ;@}d|q+f>&0 zx??I#HgNqux!cOEdDKks`W;eh!W$J7uKCm`uueqa&!Otve1*4 z7nW%UZkG7o_0`yS!gf^UF5TU@O$UC@F>6dLk2Q|WG$0ASh?Lkk4umRhgnt3W8YdVo zB^b^N+9(vQX`~0Nsh>aY4+|~qCL`>|2mW1DxY;e7R1SIEmj#JMu^Ci}En*@qU_wv| z4iP(?+x*)(sgOCyP0)0mIJ2g9z;1uSE|E|&ibox3g_&CgdH%{cPOz3X3Z5k;%Wa&E z;H`nwZQeX81OZ$}UtbVOe~_>)951EW537(%hzj`GU@Hk>S9q^+;dBzAbRmZCl+L6U z^KDG9bT|OJa`0H%Cald)F-%UBB+DFV(~NZ`g`n&DvQiQywtKD$awWE;Ki~SCvUFoU zsapd@AxOm7;2g$N0!WG2p`MZIHnQFyqZ+&78kx(SG;8VfZ?SusPXJsOEgbn|CYMrd zN|%fzW4~c3qCqsJdN{VE%M#ac)xDX}X3l7enS4jZ7|>@X{V45K_yc;`Jx0mVbdBXt zrm~F^eD{zY{|_0(g@3Zhf5(L}{oNfdC|L(FA_48X`->6qh|g;_ql#*}23BoN*!T-( zWYH@oB0c4Q`DG;X)8^eCT?=Ln&T)8rf9|OUqEVAzUoCLtnKqfi_fjN*?&5VHRqDc91%Vjk)GXn? zZ7|T|8n5s?BA~oukOyeGS-&zg%5c*iKYo+6=%FldQIoA+4NGT*|jiJJNx~k_co>L@l<*hsx_r*y&ca)6Hs@e&U?v z)8J-Ti`#*_xnNwr`>Ky+n?enE2iEM%A^Im3{HwVV7Ph~2Q|Km4M+W_I3IKkw6#USA z1sfY7Fl(AISsoEv%*Lj>U&vNT7MQ+o^LS@QATavZ?G&RPSEL)J6$EJ?)!ONceHB{C z8NZ+N$?9pgtW4VpXso%WOtu@SxF_Wi#N26djGh&IWCeP*1rSSHsFuvyZEue5o#b`< zr7QAy1$d0Mr`GBHpF!EuE3_~|F^r!rS+5~KOrqLsY9HCJe9sbGs_kqXrJNcQ1v;+f z;mZTK)X}hcFy~FQm3Pn+T=MNqLT1{CF-i_1X_b$9J5CC(w8nRY6`b68Ch$kyNkk%u zfbTiSK!vC{p`;0dl$U%&HbJWe9rmo}aDp>>2hOzT2%2N^lVMZQz!YLlXxcoyMFyDA zzLox97Mx*9ID-}B{0Tb;Azg&QWaUiQlQPJX#G&aM#)?chi)^#%8TFDmx{WB z`04Rn5^QRn+n>+NirLq8*k})Gj{x#W!d}m)q3Rc`Z?yN$e*j`;TGry`_2Fzyr;11i zW=W3j#65&0v4AOY{cFC-qj~XOM^lMF#byy}eBbF!T^J*EQ z>pcs(YGFveKD~sor6)GM3|PKgxo$S#C>L=~9hSi!zc4*Lam6oT)Bt^4z~Qki2aFlG zQ+lTU{S=rySP>;^@KZD2&q$8cF7z)IV+5r#e!J0HpmYxjX@JNTHGrgX*6TlgNKFNyo&+!TeVoB&O=EsJe>ZlR7-Dgxqu%Te*0- zC0T)m%*2{FUqMQQQz#~?M1f!Z-O$jJcGB3<6Z&nt6VU3u4*3QYV2Ui1TKW_2rDA@c z=a!Hgv#9=n%rW9wsY&@<(PJS za`wmk`D6M-hw}cXp~Ej;8AauRi>5kKdC3$g*aP&REknJM;odO?r%m82lrkAYUOnMU z%*cupvt{e7blHhbyUW8>ohoYT`AYbT7iwbE)#_?`DoR;7Iq@kupXw zAVe~xwX;hqseje+s##L5SSRr;EuU8eor4^a>$dB)%N489=qpQmdzzdzp|g3pCNpbm zfe2@%s|yc9S4e*DHl;lxF+?>=HjD zP4CKaqkG^PmPcZrMvS1MDO+calwQ)(oZ~lM3;Bhx=X&({Nrs*1c0ZLVJX zV2Dy{B_amk8#-}&@rM}-Y?Uq}78v#uKDqr=h-IN$O%do!q_O1P=eM8>=dQU4xRnm6 zoUaa?D|eRB(Jp`KG=VCX{GQN-0GYc!>j>$-KP{xn3P1(Y#ipM$LI|=lR9!2?sDSEPKKdvkDE^(2g7u zI*LGXz1~CzAuC&jP~?fefsdp4@RUtOzO^)Z}BvEr2oSz}ncU6Jf( zCQyqMxgYqGj>?3e;7tXw$AaAhAYNg`J~T{mswfIYA^V5dSe&(0| zTEfaxxqW69!7%=g2L5v^2$Tz3*oJ+uUDee-F#KVDFH`PR9>|8}th^v15(vU{B0VW9 zKX9IJmeEwNLH}HX!Bc(-u)q5~`*j8*3M3~fGv1|Zl0&_yO|tWuMAym@0Lp1%!v-m~ zx5aM{DV;?Sw8n~GSo(c0fYzac_!C82I;1rEX(=zR(dlNXAu zj~kaOWk_H)IZ--)a$&svu`Zl81!ro%Q~mUQ6O2U!Lx7O^Xf?IQ6mvaVr+WF|mIZY1 zx<5a@KbXuYD*ng1sfm-PjH=1Gv*)G|EvDBI9lL{droVyY{Ql{QRl@0fJ*Q4nBCS^vs?O1jhR2inTN|~HYfO;l%)VCE!^6gS^UNR z2~&G}92+$-`g&dq7nEKJ;_p{}!H-d$kB<*uXqni4M{|KZK`3G&SXE}VIk04(_Kp3} z!CepqnNG=qgWiZ>Sb<`Ntz@XZv#C@w+hA4aZVUBH{ESa~^_4ggS=YiN-(J+CY`Nn^ zQP<)cTi@w4i*qThqoRHpSellCnpg*YB3JZ{b z-u9#*G&Rea)qL8p1+(@3Ffv|*GCj(v(M1GRkDja zilKdROXsE!;0K{(1>u^E?(+NRd*8R6P&ef>J)Oz@IfT|F)!^spx+UOvKX@aempNNf z7qn>ESS3Tm$_lDw@5k9EIEHTB8{4JCgrl6>ObG7MQrpFu{tkn{81W*ZlrF}Ug`RJ} zm9z^wfZI^IASt-C0Ol$i>H@}aC))Ss#PEI2(M%3_JgzngM|Pk09m%jK#VlS)qPy*? zQ@)JBmm?tcHzMTW98zTB|$w1Tfjnw+3nzAP+P0 z%-5Ct8+!l(@Hr0q3A3VlZ+jdiZUbAzhf(<1oQ$)UlE#7k(x02-*PRAfDx0D4 zQmq`SoXQUHbB)ln7unb(#t?sY-q0!eY3jn1fR6j8x<*Bt_*b2pkbJR+ zwVURCDr03W8*vJU4N^)a1Y)&sRn|R3Sfb3sE)v=Zhi9a=0*;^J^)e0?ue8Xxpe{KE zT$iEF^j1&YvgzcTFVWG!fhk=58rf*@azf5;`*(bC0?d*?@$8!5Ij#zx5alW9hKgu| zbQ|P`lKZ~1#Ds%JGZBbTxFo>Rk9PEjt`ALm4-=0795yfLp|3E6`vm+W zmi-H%`R}n63oF}Su~oB*wXBLc7Jq5!GoG%PB93lW>F5-AHeBUC)Pzo5Iwo2P6g6=u zNHLn0e6=Y!xLH(cN~;Gj7)6~j7>pB@hma64D)R`d{Cs}mwCB2T8j17WGd}OpF z|K(1DkABXf-1g0D&WZ2+ewt?V9w&XwC#jL`W5w&l*eQ~I_fQ|9&#TcUcR*%@V1TTBIVmPA$7tqFTCa(L_?oN~NrDzA<~lxK=Y&SUPTs88dbYy`}+sW{~Rd zY@sTpMjyRz#w!^MX%r%eW1)RwSt7C1o+`feX+u z!Xal+Bq=1}kAo#fi;Vs@;205NhPg%;^)YMeveYPW5lo;f5sPw`fS2iRBpnQTLYFu!g z3@P0yfc-Yz)KIr~uY3IE8aY6k$9f3e2GebKuEvy(@Cw|dMN;mRM+LbdUr^4T>Jlp< z2hmq=)}DIGkK@gM-p?Q)0d5SY5ln2N6+t)Iz`vthXU}yA-LWc_6VuYsdxmq~`$@-J zFn72v(j{<%i_&EvGx}LbfkVxw=B>@KNMWzz>o4nC=n9PTelPCKeO$-5fHkB1zFAyYvA#%hr6ki-TI~wI&50;SyRwpR#uYXwsNZJ zrm+C2P&j8o`sMq`1n<7Gy(h*t`)k9#ABe5$^aMKRh0!g2C3(wZ;rl^Je!osNjTN7J zcNKiuLuzB-QQm~iTE2`%<1=UGyj|EwNK$uS4@E5+bvMbMb-nXjtXdZ%-Z%M|d-)iF zQR2(YFEGDQeXH%NO%eI~8A6)aWT#7)pT*(tajT0nsuV+hZ8St{Cdde*xrW-en$YisFva=v3 zauY&0cWyKRxrGrZrpuY(7bPflfXw{)!H3Fv=uYO{I-#GO5P=b%$7X^IN5H+ct-eN2 zDkZL&CvyGZ)PC#GfGg2p*dOQ+aW`3}@XUBeED|PUQ$RH1L$cBgB5b(m=EkDNNxlcF z$MSGw&zx)9X-DHb9j%@?>v!G5t%=hZa@_dkojdzd#F31m^D4mn#bLP}p2;~9lZzt+ zI$*UzR1Npa1a)AUW9AVJIPi_PpwFPfnb1)J+upjTb#4e5WVp~~y<5efzo6P1_TG>q zSugeL2wFqTSVsJSog2Z(<@e9>0Zf$7E&qCNtQvgoMaP+KqBX|EJ;fE`7pw!+ts_Lv zZb*9{Ne8b-!DE89(=wn5k%ng*?-HVA!?>CGxansUmdnstfHtCL@KfE?ZfTzM2J!|n zrC(Vw#9J6zKjH)z8fNw-i@*e%dPdKg6ncj!~?(^j+zan-CaB&8}gm=~jpy8+Ns# zak$r7>kVl<-=o2?jBMyQ>8_emxnaQWq-?!6X z+TBude|8e#zJ~{QJ%NWsG8lckRc2{HqZ4P9n6Yx=KSJWaZP$>E&2fZnL zxArV8p9X7ll6km_u&tO?yJEfO&tc?c5TZ%uRQh|e2&w%l+<+1#z6Mq}7RgCw<3=t;Nh)Ys99|vRjC7Lo-h99Z*?_&TNQ7#w!QANCq+sr666Zg2qQABztb> zLu)S^dBkEgW>!u~CFd;G+3of5Zqn_SGq0{`G&?!&dYaH+ehyb&4tsKXeD+k{!CJYV zlbWrT$70ImG`&I_)>e1QY_slZCJ{kzDOEG5)J91*eC9%K{@tB?n9Ira zVwz|AS@+nsT1)egal@5-gT1j^(BvrLbUi6RPdeQaR!wkS zYz=xzR9dKfI?^&}0_>-9n((_V zfCc0++Ycg4DjDK^cVkN!MKSs31<(mdiGT1J)=%ggjzGls%>W#KHhqLpbn6H&miQ!O z2#kRR2owN#ye`olN#%J!<;IObp6?Rw4ss@-Kp%8<6RQ>2)SA(+f7xlb!rH2$c^BB; zdVEJpKjBqyN>Fc8UXM62+)4r4qkmBCrndaxVz1SnzVJ7%G){bgp*%LBg=b_x(xr=ap6oqb4lq-7B;yR3+7Mg|=CK@Ej+^-=T zaKzx?oH?ra##?U)1qljkgrM2}Oucl(*S_y-KsuqY_?s3inFmxXx33tUtzYE9gB2H}swc#4PbuBHba`Hq&NuYu@x4ySpXrfKgRTXn4NXa&*e88E z3tKNz5>gWM`q-I`&x4hi-oFDnpUw(Y>1ekbOoAe8zVVc_ZS9}Q%i|+!zADM4t{-_< zt7-qa+D5G(N*o^1S8gbau$WrloL+`pYn?HQAN@(@&*)NJE4h1STK@z3u z9LkfL8TPyCGtr`!{@KQ)#*fxt+Uc1VKb+P;)<^OAR#+H;D7eU;qbf{^eB53P;>6GT zZaA=6VZ`B`E*Z>cvi3jb;HK3~*~q;6X1Mqr2)I`8I5!)+trr_k*r#`)JBRL3v5j_I z2Bo(L{JL(MZY*9{gNG&7hD$tg<*n`@lfpE~2*MPTu8ZTb4II9^B!`lAm|{F{1gX_p zOK6W=bUyoDTiXjWQDTceLBz@zuvAFR`uCzbY@Xkjc>Xk+{*Z73?X1ikQ%aFnlGWMf?PaE7R~mTM37Ua!uQJG zMu3tBnjFKuK>^}RB5hdq7K#HXSA#@LzCYs#N{Q0D7vC;^z60M4{=J<5u`0W2w@Iu|cB5_sJ(Df}1>*7!-QIZ$L$>6YKd=-m~ zXhA{0dPc;tx!3%zeR6A4lRc^4u)8V=JVRKTy3ue-9p~}#`)g83p@bfNw&}bd0;u*) zF-!Q@f9(1$m0G*`&(Nnb`<2^^-9mt9V>)W13%6~U>QygBi%|WE&SXH_tyG-TULk{0 z(eV7XJq&b;fQBHEY_$~?I_Z!7A5IXtMdfsuZSgOZ4$9GmW(^|3z5?J{XjDQ}pC4rO zg_f^~i{yV+b$p!S6@@yF#_xS|%fgMV+Ch}#^YUr6ArRL8nKCV6amm?|#VK#|)xF3* zPQEU})MH`mR^OqO+!Epyfq1rD)sej#iVy2p|L(KtJ&eU_Jg}KmH%*b5PCOG)W|H364suyb;*K zTU0>V5rOEyg5AI+7rq{t?#$x&-E3rv`D@J&lVRPBX3^Wm6P*IS_oUq^msj$ zt`t8$3JRVez1-wv5&K0;xL-!DWZAXsDV8o)g^y)A+kdpd)D?Z#ur;I z--cWqi`#^YSSXy3g!lp^28}hmTKo+OfsA}k#j8Y!RoHJmeWumr#2WFd6d~=JeykO# z)%bcB%76~dBvhiJWkHj?A9r8q@0@o4A?BMqYx_+i?{xNqibme5(*A_z@b3!&5vAEW z&^knJG-SZzE)nQ4@8v`63eFA#8V|~a7dO(ELy!XsU>_QSucV^9=jKH?P|v0W#oybt z;a!KJ$a^pwEiEPA=sBQ|&Nr=}zg=G&8=DRIHVG`@veqZ#)eo-M+HDrqc3zi8Y}qzC z66{IBxgShhocqu!7QAY8jQ0+Rn+}?)DrpDaT(U{*o}qLi_-9Vhckd!0C{nU zaQ{r*)=i#UqXW)BpHSR|XjF(BdIvkpvid9&k>nK^6qo`E)gmrgw!dC~2=`uk!xJ3t zsaen`EKGk>^2@;KHRrZbWpz$Fr=vp5ZJXQ$K16!&{(S!m<^GmIK%IFIFLZ@LU9G>U1=_?; zfv`2JSm0jySy@07p zBdDUQg-ZxOjJ@7pS||%!FZlQ?@3+4SkmnpEB+MNQe*r_Qmw^A1EB{ON@&C>_vM~R> za=)PeUp+3j?gIbSgt6+lUIbTO723G-;ws--d@f`e7GHV~hsFzl6g_J*r{wV+$n z;JXwG9jJ{!jr-@Oxa7+bLW#ihQikAupt%AyO@%0DQIB)Nch@T3AF@hy*peC zSn`KRC<(KazTh|CYYmshta_~=G>aXTan%Z)l}_=iLUA4vb-i zl(JOWP!Cwg3_M`1j30M_g?Kk)+mF6))iBxR`9Gi)Hmi7lEPd?i{L}{b7YLmnF@1f* zj9$*E`6n&>rNj3BA)x+!8JU`jzbvXdT5ln`JmhIKeiT;?$DcV)IH54Dr85WWPr-=5 z4!I?e<|M)LD|AsmXqUMQYuNii7P;@{g>ciG3!X#Vg?_6a*7m% zC5x1iyC@VC*7vXw?nWXB>%+w+;hY*pnlX9c-fqg#JXGn|G<45E18Kdsx}qXdJ#C8! z2IdQa@R$P`IAMZbIrI7SDA)G)4&uT-`+1D>7pd+83VrKH7&&zz^W()xCs(sV+Ul-M zu1JM45tzuD(yJy(9*ex}rYN^Xco!1iU>Nwa>Z1EH!qe(UfDldKZ?p^aTq^M-mgEaE z@3y8evSK~;@2f(_n`y$*CQ{WfIHIYiGaXHz8g%sNezmW-1V9A6v6)P0I~JC}m~Ck* zT4g5_M9$Wxo~+OtlF9*^KSW<8F~sANtJMlC<$)IG;Hu9pvBE~tI4^rEK%$wAF(Ues zmvdrTWdh0@Bbu$s+}Ck0G2LUy0g1!9&~)}9ytHKz{797~KELmEH>|A$!Q#tpQE=Pc z+L-q(y#oyk(_kzN2Z{yOBU-y`ZgsKApIU_P>rfr3QwxiKLCc!gb*`@$6?L2(!Dt$9_03v z2RP8ektUDGKt`Zn+$hrWajFecXkt8T>E{?0N3r7-t*iog{-NhgONa(06!gHdMgtUJ z&+BXqJkAktncf;q@iY9LPdg9*K+(2jG7rVxJX#lM0)iKUlSX+8#lO`bZ=#xeEne_ zOwpKV1ce-@=0fqsEWgGPaz02}#n*by@{VLT5p1q#?4Qc!4}I_=6$JuR`1Y-nKjiAaCVDrMiJ-(9Fa zQ>(`Zfx|jEtryx?P+^V^=rs2GuepvkX!h`X3Var){afaWNA0AUdM_wGkhtd$!y@X8 zEU!HcH7Y&NjUwsY*qhXA@~3bOvwmrHevr^!1g<~2%t>>u z-FK%&N^LQb)!RGwMcymu2FVJ(nW_S!#A9iS4zzxe=po^lxNX)pZAp1ztRI`3*uR*ptS? zt+(ecWDMRqjJ=q}DOi?&d2y`gePAB&CGWsFb>4tv5)r<#rSRh}u+dvOXdKx=^vIbL z{Q4Uwo+~?i#J5ce6MH@t@D?La98}J(O;o`PF_Zb3;8Yi|NkAvb;XoB^?Gsx_=!60m zhs<{^G;UP?OaMbY#{S(ux#qu=kpAxhl9}Ug^U%6+a(_}txX_z-7(yO7bV99l1gP>L zVxkz|q!vIN7DhR#5)|a;hh(5vTCu1XUa#AGsF?0bATCsIa}gcRX}bXq1($W?++Lp; z5=9>;8*Y1MtSGqQJkpbtcyJxpmS4ukgM@Pm33Av6cG#=@}9O1+lz^_en$SW(T}ZW3*D0Jz0YS9Gc5BSH9i?#x z<=_HxqrPuZD`P~JD`TK&mpk6)YPt&k5iQG(_39EzI43E3+q~#G+kDA6(h3w3VQVT! zlrebS$yZ$Dc9NvQvh0A^wRYaLEk zvEOQt5w81<#^n-gPzqsV7))6DTbP}(eBRY`eezP>+K3~<>)W#3sUalv<6}+{g;wk6 z$|=y}hW0p9Us=q3+uE{BFffI!q~4DO=1a8+Cydy+-=v$RX~?HfI!`Cp&HQ&VIo(gX ziM>GscS2|EVTzZo-iI3~4tCQP0Zbr*{@19fyBwUV69_LT^$fLh)-3(`wVuK+=bH>O z79b`?w2N);j)_e$m=vU5hUBEQlhOuqDk!Yy`t}-dgfn$I>5z1&AUCr z$Fi~lMXViuz`j21o!G1pGQ$a&VEd0TeZ-l663q|;=Aw=S5EK8f9fJx&NUt%3qJAhq z@m7L?OfumC$?@?)y)B-~N=DLVPDZf-0rfcn0rAd$LZ(V)Ug8mf;teH%`NhTUv4Qac z0mXsFc2>xWx;cUNMpEKdc1F;WiNX$kPG(k8#et!6;!;up$vu9ap6z-@cJ+FGN*&oH zvBI8aQlY|%R*qIm->o78wf*!W0`-mTDnN!1y^toj1X}Z&NSh`5IRwa>DG^V3M?k*K z&-4wAjU_x32Hl)2`xC+XfzO(E-8%z6AddIeiurfG$JwNBt!&NHtuO!inX5XWRa%8Q zbaQBWYL-vPT;nr8ZW>3Wn95+cy$6g5)Sx6*P`D_ZPD)r)#l22b=-&`N1 z{o-xbt7-2nu5Ql=s`a>2cnh)VEiSE}bgWOCJ=x0|8eAS6>`u340UWRM@(ND9edI#{ z8IMFa{gZ0{9Yw|RcmMLYrx1a-K?Wu+{jGRwWV6r9#fFTHw#6|^~fLj@t17f1#S*f z4>ur+B?Ab&{DQTnE0?r-U>G_=FAZ8s4UJ9JRvY!tQ(&M8RniNYl^u~zX~T}Gu(;Wi zui4&tE+Hh9aBOFP@knf>uTXvmPVKZ6`UhdL{ZEJ|mcKXX|F3rd9}|5G{j~63?*I~d zZRPzT#nAKJ8TkUyGL(=xTEHaTZ;a^+$vocsbof3uOe!THV6XdIxX&OWu|CufN!M@v zloUgK17l-KTFaIO236(;28UVtf1qr7j#5Ehd{w!Dg{5Upp@E5kLHTZ4rdCpVR$A$9 zre;EXMy4jn;UOj1359t{iYm3mnn_X;n&#O>YHI2Q*)hh&5oYm*<4F9X&L1xG@l0*<*54~u|{AWv4+^7s3as&D?br> z^g(tepBeqkUo89I8;`xyPcMhJqEeGwG{(O?`_*+fb#AZj2Y0tjmOHocD@Zh@F?0Aa*HYksDC|D=(Bl|M4G{GDM{{4a)e>x0Hl zR!uD}&rMh|UWF9VvXYZ_tB*gf*hqT>?)~i-!t~spJm7A7tD6Q(z_}0_$2*O#X z6*Bb}{k2!Sl7AA{|0L04|9c$#Uj`g;?}7mDw*1F{nZfU-ar^<}b<*!PMju4ew<4i; zVYG{gT*rj_v<+}@a17u=ha`STo(e#s6(G>$`a}>I;^MIhk#3-%#(bclBq#5I69rR` z(J0_CCUW2+GBVEi;3S}+GT@_|O9fMhL%iTSLkZDKn?oqyC?tqD1-Mw6ia-HL4%Nj7=xfdVNpRzKw*Oj2Z=_)3GsadY&%-N(pr4qd`50Y zb6CC$O|CFP~(~y1s&O6RtC=>3*NwsE=LAMT|;P=rPYU`EHLTg^; z!Ne!4`|EX|DroV_d(CsrKn=vV%bLBij9+{jv9&IHh$mb-4<&LsW6wO6+;46*6r0v1 zcelLhgM&1q!$$nMVGk0qP(TM#U-JKC&VRvi|37abA|)zrZ|Cx#7Iwz}u7#bI{qLAL zSrb|l^<*UnD?w=30y`*eK0R-je)oR0xcRzGC`zW1jvl&U0)+@^D8yH$2h2o6&;<3n zFf!S}igme`cctrDL2IjqHKuntU3F`*7ew!)=O;t|8{m2S&7K!2A>H0=#&gzl=fN*t zk)A$Dlo%Tut4Rp6G$xnL`}Yg5i^YkIf` zcVlF{G}c)vE~b<+!m#Mz>Difa(-!0piSO{>hSzp|EHW=b34J6Tlb4hf=_MHu?DZU1 zY}he(%VxNDCp9ls-st=BaYDa(B`+5p8!fFo`wYls8NBNd?4Hu-R_|mHPc8Tvp>BOJ zxMc0SEYx$J>PmHJ(c~3LuZNFAP#hDZctO0BInY{``1B`fb~P!W_iXj6sP$4&ZPLpw zkcn1G{EFDC-_!E-NaN<>r{z`3MnkXBdpaMHI|tJBN#JJmGWY1>*Wq(6(W*v7)Q}(} zyV5&7Nln5#tCWd;jQVE%=vN;U_2?ISVFuB4e_xUwV4YIy<9Q&xQ^Y5A4y9YbP0K5V zi(d)&;4ArhiXaxCWsA)alq)Pz@mr#`Vt?Xg`J%)&3y{x>RFRra> zcJU;KB*bV0k*(q#(LSaoUzAs6QL~P-t{t^5z2jX*5|Ox)K>k9TImFm)yF^oYj;}w2 z-AG406lckC9+aIuY+3}y*TbSa0_(veUMbV%mdEHuw?*h|9w^4v`e0q0I4kDvLQKbu zsLp{A70MFzhd&$AO?15p&y6ltZcY_xp!Jr&R zuc_5mO$tM{39?k!DGJeUbzb^jHX|cWW|rD2*xK2aUsOzUHM9oOG_n_HJ)60|fcR0w zm>+QQ)GZO}sMz`bPPuwi%2`JVVD&$sAG?rN;`_-lsCYExSn8 za_7N=-={_gy9E#N=vLL@2itw_1xEJ_;i!9Zz&tF|^q$}gXmFgYHDhzOMpFqaQX+^K zXc1HbpkIb{qX;y;PU3r_^>%K01hXt&PJBpmrg^>f30`|g{Lk~qcBriLunL74-TiAF zZ&kmXZcvgY4>6itQ!0^U8_)*Udn5&pya5xtai{gym`dE#22R{JBSO3Y5kqR|DJWpU zAdt{In9cMJs@St6mjK+VKtpAwNCV~c0A@hC?3w3gPS#fChvsF7!ALrd85XFqbPd)+ z+_(kn9XPn<8>-r`*lsyj-LRRhL6^HqP6INxVO9b_Hlb|jciUa90jgUYWkn%8vk(pN zX>j+^#7HT%)ku9WC>KQp?(rz%X($iN7Fm&A{lEc_uIw7Q?Rk{Gedxqv1Gb!(g9pav z{dTPjDL0C8)HElR3ik&KDV5jY!&0@OsxBj*@&dUZR{i*0 z{iqmg1{rjNBfR(?@Hk0YTscZ4F06`^*IF9TDb!IK==zTvpC@GSlMRCD(a3=XL*b;#D~%R{=FcPn7M$Xr zOA1`v{R85KvVF$+N5mh#XR)S1(DakrOxYV?bc{*}&KW6t$YGu#zWD8TD!`BG&||*| ze^jdKP<~ci#x_;ojxIP{PQ21CZ;mK{vNjd(A#l&MY>JJD|G6chAVj~rC$RXjT3L;b zkyxL$k(=JUn)hox$E&KR@tn0(Qs4=h7t;d2kscT=9|i905>f6t;r^fD6EZ2 zpwXv>$NNm&B^ErSiseYi#I=RE8ZAjN4nyHJu8;QBhB=NZq>?Fj7>uGB!Klv7dh1n8 zbj)RFTx3Rd7g=eaa$iZ|R5vfb+>H>n#3bGEz4En#>B$+xnjY)J@R0>E0XDM7ixcZ? zS$U2~>A7b~*tx7lZ1_fUhwHWZg8}DgS?Uk_9Z;-c8Yn!c(rd1zQaDoO`gM^sh>bCzJ(7?M z<|g#;9u^Y2C-Z)v+*&1?MWJ4dktUuEk^B99KD=ZrOT3Is#Pm`FZVBEeX*eQJ;TK6; zxnIret?X=XG4EOB7wVb4kNWcB^r(x@3T8ucSyu)me0AT(FGIJRY`3+InhOW}&elC9 zT5lbnpN_?%nWxn@vbL*M!tmt~v5uuUB7+kxb!i)q3lnSiirTEb?h00_Mbe8%O07SQ z{l?}_AjoVL!TsxSKn(Xj+^>DQd&ue&tl_?g9oI$h#Bu#xO)7FOzd35@`2LEU?m zzkEOf$;)M{pp25&GnTZs@(R0sNHeBqYQ$14fbqeM-%-rZ|6$;@W&y zI6;5Lt}D<`hUQa#0aB;*cKk_LU8f?6^af>25m>5TdD~plG*)b*=hy%m(40}Ei1u+c`b^Hne5R$rHipC<+%((BvCMG3u?bls-cO3_T z(Xe6h^XzH-LNiL7-vyjONoa1XH;>_g~v$*g8h zk4AD%#upxwTz<37`~qfzG@tYvT|W|1k}2T&vt9M`=Edh;pgyIIFj;LsZ7+FOJea^m z+Tg=)sPXns`cMx^u*idI*56g@2j-5@nM`v+V&sst2HHR8J>Q5w1z8L-KF{G*)B;WBB2bU>b!y>~N7{MCCZ)&Dwm=;T?&Xy?^zT<^ZGD zIEDr(xv!=>cYt>bmj%jj)@N;0f>MU9zYCt_JCe6S3i=71&YG6$AShgak4A7HSN_GjzPhULc#{&FESz!Awj)skQ` zof4AU1OdP^_j-iQO<}<4TfxVdpJN{*K3=I-sdO4*5!;UR^vtKi_oi~h5$3r`|C^d4 z{dgaflNXKKunq4RogRw3?_->*zX9Tl z_eOR>DAE`WkA&t-}p_OT94>> z&v1@Ib75%j&bEQ-37n8nUAIo}?BdOehCpQ$8z#OyrCKBeo)>Jfxy;00K7fiPYO#x` zQpV@wkQGBghZj~x-QAAQ=ZC-d!`e$)R)**P_57B*Zuw%M_5+fK($ zI=0oZZR?3`+qP}nwlh6*^u1MYP0jp)y^nU?_g=Ub#ui5M@GY@RTHu>nYSI)QQ(iyX zvL8%>8?MZzvYcx8nzq`ss!9@`rKRK6^K}=ilI_n$ECDL7$KR@4%iy~zf=20f+y3qh zB?s!;@dxPTBob|NiGR1Lqv{K4-7?Oa_g&y}P>Z{9QCNT}JsJHF)-_<-{BJa+l>k65 zE;(?8Wl9 z5Cutm>r;>Et*@)WrN&L|;quDWp3NHqG%_f>;8wR$Ws&JP4TKQhi{Z>p0<0PsFo zJ%P3xjfspVGaP1~<`ny_=8V!*Z$FUz{ri@opnK>!=wW-KcB-KyJEti+L9Vy*uAx&( zS6u{pbHh=W!(gg`^!^wmUCIheD^=%_mLNx&X%ri;&gGlA3gg(0-G&~1;%dy0KDJ+; zLUGywbx3dpMT6NRaZ^hEL=5wt9@SjwuNLvN1_vUv+TpT+kX zxYR$^zfXl()NpTc8k%P#TY5UprF<5|V(x-&EQ*f^W=!W3?FI!bI-{>)GTrksHHACn znuIdRB?m9^V~q;MuoWpk2nJ0Srk>onps*g8-FeXfMr2N-^e~P_^U{qO(R#78(4EKB z@HCg#^?W8Noe<6Ki;j&^q2RX_mF0z{kJJ@N5^C5Givh-&k=tAhb%T_VdLgtPp*-){ zc!H&bIh@g$S2(xSOlr?~ZJtpKFlI(2Tq~O;9ZbO^8&tT0)BL1n2POHE?4}U)q}cKPuAWBQqD|>6QXpqEmkHUnUGe97)vR)an#?WJW7UC-80l$kbm*au_oF0 zqc`bUr_Sik>RS}Br8oo+YZ+xX>^bGm=k zjG!%YtCLj`R~QP%k;PEJ8WewVXjvEicC>9GW2i=5jqp z`$g37^|j_u!;R@B8Yr+WIDBWk=Kq+P`BoY7y-aLXM|9wzoBQ$$A%)PGit2~}*g|G< zywO;aeVdSabNxU=n7Hpx)jniE;dWhy=Q8r#o9_*j6Mj({42+{JxG~Ufpc`u=_aEV& zh}GOzeY4-%1w^CQi2xr$eg^ML7ZI6WX?6iTbhBHGe`y53czI1^rK{1 zNvtChoux@=WTbRW9n1)3Re|WT&AeMgzOIwkU#;V8T`CAbUrfPKvZHP41bNnm!Xdl% zFNlOay5Qq};f5h?EhUGMsVOz5=KI{D%EDPCwL^AcFS|#yIw!yH@x<)Xd!?9&)k$+or zFr}xavben-wKYVd+(h?mdj9yPm;p{E*SL0GvLCv3UVH+98X5<|K>Vl9*%12ttA!Sd zwbQ@~q8(!>Fd1Fd_x3{!KzMxZ$Vz}g1I;aG$ZKcipYSgo1FBEX@R>5ie{u&^va4gY37 zj#f6gLC-nq8G$K4;Uz8jQg};Md?TydZhJL6R-sP&ZC!O><}y!NR;6yAS`}KdxWqxY zd2KiQ3|9${0P6(b`$_jLhOV`IgkYYGdd$cNTjoys?C$MU0*$9Ub(wd|hdLzna$VGoT74|ry z?ccr^Aan?{59X)A9{nLl z%#UVZ6_ZUK83t7^xICROoewGknjEqk)K6ok1(vn@pF{F@IbJ<4jGS0?t+zi}XGgQ1 z1~-4aaX(%kxn^5@cWQkI9<7?lE7di3u4=IS5W{dNu};};1EQN`i>Ks+`1XVw;g#S# zh?o#`d0O8C`3a2Sk>S^P56=`%@^<3?j%iskI=gF3-bxMl78ab-Pmlf~(d+fNm?rJ*x1nvJQJOvDPK_R388TU(z(Sj)LOCiaXE7?%NG7IF7P{6E z5Vv#Q>5^h$1^Q7%bVv>xY6-@wcwEP=is6D2KoTP446MdMc0-fP-2!oT^q=4;wy z9DN4RPMkG^_r|wPsJaOx?QOTTu1pisbscWLJtOES3D{i)R@f?G)LFPj(5g_@ceHEX zwG_=&adng4Zg??cIhe4b#KAhtTxpX{vyEW+;#q0dUvhyHxg@yYBfV|*oZ5c0afZ_4 zjp%U5E;Epsl*YLrHM8bLPEnj{1yd@F02dpo+gx$^dJ*=~V~LJ`w3p@PYlG&)%&2vV zFNNECLrq0G3h zVd4EApy9-(!vx<|uUBej(UFgKJHRBiFt}*GK)Za{m{I7TT$1iwya>oV^@Eb{kwx1( zI@DQ1n;uLC^@fJtx>d@ZqRSVs<4;tT!n1^Xsx&U&d_=GOM%qVoRxab1s_GhYHqpf7K|6V<+2M39I+(7&O{~?p%kW+IG4dppI8@;`AC{f zQnI*(4u#FbhL1m9_~P|18)zG$D<_U@pw&MkjR>^Lt#^4My7pTtQL(lK)YhH&(6pC7 zAyYJ0T8ReTa-H7XBmlF?eHfS%cDilBgZd+3xWnH;nF{1!Y&Kyuy}W*(PmjU;8x1}) zfRPml-h&@OOQ;^Mow3gH#x5y6pfBbQC2T3CXA#pkSst;1Pss}lmVBrGAgnu~N$Id@3 zgwrFM-1FgkyBHN*BO;zAB~J&p(ZB!4wcd-C9+ zoYfl8vNeBrIegeZAbSyg@7G(8K_B#bGfTu!I}yGQ8D{7O1>4mF2ee!yXKp9X|{bM+{DqyZynA3;cc{|ciU_acl*Ww zanFS$(|i#pIIEda9fe%n#X!lkF-}-yNA&j^$){%ZkM%Ir@BYDtLtxZX3&tbaIH^H< z$0zYYG$wHe#-#9e`bQwOZO~O`hnGBP+R$eRAz4TnOW(hi3C?9wmSXkk_*X3Oq)Ho` zFRW5&y#={l@j=dpf%r)RJCAViqH4yN5sDubrh(ZQb4Il`~xuQ(CISwnW0FSgl zO2lvTa$~lvujqi~gQJnW^VYZxaDjN%aYXm#dBvkTu8QYB-V08b#yoGv?`vfQK8>UF zS|^L`iT}vPFf79wHc;tDoH4j}7xz1Prz0@}r)0P4;ejJD&it&{_J10!Vjb<6-0voq zD^}Kb&;H8#QWxvF%+(_YlTiPOBoSd8m;x=++&13~ zi_z}SGuG$Gk1AZJ+xP>eaAmd%*nGw(Wzia1_(@mc|4B&~wks$&;2h2-E$g;ID$7h1SOB$R(zsf8D`6;mSPbK?X!x zXQxdp8Dlcb#EVUeX?*^OW#Ob~yKr_>mN=|4rzsN;m^Q*W16>a8n8)AK&Fi4_3{^fc z`enE$9Iab3R&*X2ot(@h-ou%bqywkOZ@hd2?bY4#{zM^}`nlT@Zp@`w2$bDUefYV@ z3;jXV0?Gi2RVPJ_ijxnk)142b!M)HZ6?qy4RM&k(YF?xz53Kqd(H!xXtP-qjP~l(f zLDN-jOyk#xqtRp~??+xO3vRKr2Cim>=yiktb_R6m0KwUj?j$v?CNVLU8`=7{{_%;; z6Xv%YFTA&g_zx)G%9|ZGUyQKToHZ+68?ibk>XaYCimiIq&cx{bOUH@Q8eydT&a>NJ zt#<%9NBkdfCr;PW{8EsBh#(jo&VxU_JrK}GVDu;XZ4L?hLEN#DX2BUWvV`tk6&1ST zYjisAWet4`zxoDmVxAv}K=1k1Bt3MZdLnt+Uf;yc;XQv`_Dw}L!>ibwrjFtD>Clfs z8mXduwZQ&J6#GZ)Gjq4LiK$BSb$PvsD_bjTfH$<%F?9tI^T!3s0e8*)5=_>-7t^DAPF7ZPj^ zM(Ft*&TqSm13lh5U-=us8d9&mua27&c|Yj`*X%!)7sMTs-3sVmAauqeRQV(Q zD302YPQ6q8q&IORDe<#{?tVCrYFG)EIkZnEM!k1HR6!qHfHk1x^ZQ@q_Rew;r}OMe z3AD6BvH{^%+ITZxfBJjz;X(24KK$U#3nLFc$JrJBX0Eu8Fk`<)rn)`b9w~03b`tY7 zvZ{7Y9PJ{3svq>|e05$aU6Vs%4|TCf7{lKTIG=#E)rvw{?QxHBsnq*3(0o6U-@$uQ z2E9NwSl$WJItTw!ufc@SvPlo{4-AIJXzQk#hZ2y=8>zLCF&KkLfwL?jv zW`$A_p+FM73=K^wc}4z2KwtrhNQ)P~*YgI$I{w07?sR;LuU>w`BLgXSQRiF+@jLiEgKDV&R9+{Z-!=fc_r;32P|Dca(9jVkdVNj`x%2(U*&gG- z3*8u4J=alDT*<`?1nU%-Sk|zpk5sLa%ZQ^PG#z24;@NH^VJJ3<{<<$iv-IHcz>r-Wm1WSC zC@QPFO>_7MDg}Mdjti0RwO*`mLtQglZ7l@34}%w-7b1G@+rC0>xSWB4{R%kRXcjt_ z+dV+Z+($k}ZI4L*#C*Zq^UQz&mAs%Y-ZI2$abMw%0anq=!$S!nxngEq_MpMpOd!7b zqP*3tBcuB`(c?i~aA}ald8;$laR3Km*B26=B*r=W8xs3A$^d_mZrnNl(zU%3+SF$x z{AMn!$8zxA_czpF-HUSnPYk<^%sL(>+h!+rwm6TCtY#$u=4t*RvImSuB()lx(_;ud z{62woof5_yTY-k2cEKDb4JKI)RqUVsjI$eY_oz}uF54%2?!it<^rvF15Ju3HY5;Gb zqAwoc#G%<8h^qK;lU5IzGV$|U!}2FqWI@1AI zlRAGX{0aGvtw0oh6NJF;$s~$|wr*6@SugCUEpU2p#yQ#DSEhSbPNi*8f|_l>jv!w3 zi!-$;6bsGC!|Dwn=S|qcHf0dUI)Q6Jj`<|lCMojo+a416C1LBTBzxdOGUVC7 zlEnCnG9==tc6ll_W^G?0>x!B->c%iYjc6r!GqbN!fL}IwW6=KORysFvzG8V2=vxIy z*9BiC%eehDvrIZw{3B!a4tQ1m%J-JsEPskN(|9+e-a$M=9bljc$+R2Io^y+oKOD`RN>Q7&sDh`?#EwBkhkvQu^&=~r) zC&(>;c=~8utW+bJ*$jt#aaJ`-3=Dk|_wZM-hecAf;2ZP0W-^a?{xR)l^Vjgbt8K8y zm@L<23vz@TU7hVRAUsL9Or_MXoi+WrOC^a)_JyB7V?c6Aer7~u7 z1i_Ai;KzZjs&2$BWn(m7;~BkozOxDUb*iP!jEQ_fT$5U>@gALM;8*9a-m%SUOFQ8% zo9sOaR)%m(XtHpFz77NgR))_{#}SZX5pw7vBq*^yq6Eu3{c7TS8(iQd|8{ZOcz%yA z63J2B?sQB1gbu&SN3?ic;=#^@I?r1gt{~UyvRsz7YcPixyvtYH-RQl1fB>EtOYZF& zN+g$aYspl+%(KPVDKm(R${^Cj{zk@@AR(GWRrli!%w9fP3}8M-ZdA!<`kaRIoZzon z*W047=8D3hEQ2j|u6xnFMv)MKMO|UMIY{q;rRK@}_0svY=bFZyJ2yuyYb;EOrQN-u zU^rR9a)--+!Edw&@=OdXP>$@i{j7?ky+wYQWM6eS6v6X%+?+KGy^89Q(>tcq@qJ(R zwGMd7c{~?gD|fW$UdV$A)HMxUI6^!zPWXc}%o21ZUTdk?qH%nV6cimDQ7Ip*5j7T=sx3`R$Ce!a z(c-DZT(5cRg9zMn>l;h!_IB1WusR7x(NftLtsO5JpX|7wo>S71+Fo85|4RKN{wUq# zD7Az42X{?j$&o;-P#$)6ZoN=jcOi}Ld&t_p9Gi4-f!f3{LCHk*;0(e=d3616TYrBpp_p>fqR?U1NS$CaN*xI~PRdZv~@|j_rRl5$ah^y;mML{)%$yK3toX!7shPby0(s5u_|L~k0o+ef;9}g@&@Hg z#>VXUU`{&J^>;KkzYBmD*>NsQgjAABeEIxSi42weS;UsOKtnIdn@V7Yn&g3ev?RA9 z71MJ;Yys&gG?mGi*q+<#7w&kT{I1!fS-sqX1v>Z(q7N|DDI;k{Nxb8HW^`*jI$rEc z#yyhuBjqdd+)xP-X7*?CPf*ZAXY+MfA&tZLBBD93;#&DF+ib^{zp~(wt;k&V5w7OMwvvUh=^*#9WDa`5zfFTOR`~~c`Mu-#f1Y|60 zi9;fJ!L@uwr%h}-?e1-`4tAODmPK@_-XvuGfTz#){ntkJj$~72yzFlUJ1A#U5ZBl8 zepa>gLwjeK~GyG(cK8(>#&5nODHLtG9ms*d9@gaxyXcNG9) zPV{+9xgNqiw{;uiXwk@G8CPC}$02xkI@LK<{xQp3#W_8-Oj~XVKK|P|-jLV(1DhOc zZIOcLQF&4Ts59r-o?(AB!?`i-3%Fpm=U9t~7mm_z4K2RZW{WC4&e5c&K z?)XPA)WRjhZ+|mjP*>M33^9}9iu*D{9S1PiqJO;A`Z%&mRH}Q~3RSj16dyKHg>d1`rglNyL>*~m zutOGm)`0w0I2}v=mZVz>KU2b9|2%G|=g@wE$eI8>T(;^J#**IT7bqLA@0xpL7ZCHa>Qyb9yI(ezoB zwh$(rcm*o?y}7oT=@E-}Tr%y%9E>cM7}9vm&?(_c?&UI`JOIcgubBgPYTs=woX1c~ zdYzm}(DI4hmK)5~R~k!{v4u$y50>Gs-50WvwND8AgBFjH`URoYGmg~g{ua@~24uMV ze|wpG_JBNFyDbrA5+G<*;uk!@8(Uk@U&czzidAy)3zAXCB+#3rN*Brv^P{{XcfeK9 zQUso;34!ht(swLHRDE8%-m{#JGwAji7=`Zo8Rbb0&tZ*IiPb`i@<(paMXVxG@eJZhS3 zNjBD0yoQz#r6QnjaZsC;3&Rh?sLe;`m9HAi>`eTsLN#duKbVS22(u<}!NF@LTIr)F z-a{(+VOd%_Py$~OY7N&=54ch;)u88D2qGMp8Z|My(JQKT>(u8G%2~3sNoUIUuu>v6 zUqg1MH~eTOV-H5?#!BLuyvwh)rU+>7pwwL5hCpqGD1&2>8t@oS^%cBiY9T0M+?nIAux-C_}Xt znjysX)a8=cRFQ~ImQVaXWk;85(%AHS7-96PS+f{-`qhx)wnz-&t-8XtaN1@bDDym2 z{aBicr7geewe=KTs?TbVC<4u~bxM3filE@=3F;l*d|Swz*e{ z*pKi;PLKj~+dxh4xF^7M6F23$uKs3yTdZ^vt6OGymuBG{^sqXAj~w&t?+nKE1wk;jyxh+qSUVk zFhYd?T>J&j!-x5qm*vP^`MI40GE=lO4;J9{IGpv&!O9KNlB%R;=1)~IA1F^WSLKzI zCPa?$%7gNCDS4VOVpH_<*}(H3O!NrcRpohP|3aw0=3QL4L*B{d-@Kw zTDTiXyR(HWcWapnLU2|>L3CDfBc+;%q?0OgA3GfJeA*X!cpDE{+&#}Wg&@UePe%jC z9k_vX82((nsZt*$mqM#hv;umIu@YSo;4%w+zeSk)NffzZYabycqhZN7+>+z<9LW`M zunU$fn>$aE@$bQjQznV;by)mC=8Y$4Q84TmmVtA7-`cxi-HX?OPq0iSHL*6N#L8;w z&=C65vkl(>2Xf1;_R5W6Dh1~|JZ{f#I~kZcPa5>vM_**Y=-2Tg4Wy2hsdT9?gV4C*5a-JVO*-J+sBGiTj!L+sEXk@>mn`=kV z{Bpz(Q8nEtT`X79v)WQqCzg{pF?;cJhGpUX@kNn4^t}AvyyE|-h7`+xAZP!#4^8>1 z_xbkK?TY&I`SlbHj4H{v3#LuU3k)=&3e)u8-t%9oMgOl|3{F<||M0<^JfH(UT*$9KbggW*s;qSE^%T%FlO+i+36Y*j37|jdJqeMF6@k$=i=3^RoZFht zo0i&}=&PDmSRN0ye?CCeK5RWddTxHUNr-xHrzW|28os9A#D$%&q@_p`wtoYvl&&1_ z(%4;+JIr$D#ccRm1#tevgAmrzY>-zy;hMgCt&mQkTD34F5I~Im~>FKan-v# zzDBJjA#|E=g+|>@E4hbPy}5maQIJVzG`RnDal$&Z=@3CiU%g$f?|Xv>gGsm_K#3=OwLHq66+Wzs{K{FhqO8L39g{}(>+s#av~7|1T;%^CI3(%vQxpgkf0vmoI*!L{Nmb>mDO;5`Epl6eHibLpH!E#W zVp{SXiMJ`^Ct)@Pu1mQqOIub|_wjaB+Mdfs`?TvXngs9ssxp78ux5<0U_a?fxuvVFNb z|0}#L&#(HetmoVl|26+!^9K8biMgDTHM89CGlUL*$|T6LJG>FO%|9vuV-#G2?g@c_ z>!u&)G}|r&fVjcR$Kf_MKd3DmI1l;y%gMs))QbGP-eN)m%c&_^qA&GFQ12i2NhZ-C z2E*PShi*!0wm9_fUi<5<8?a}KK-fCgE}QZXCYjBqy8k&>oMjP)hpJL)QQQ<`;V-3E z)41P6e_T*vQ^+MKEKpZF%O5Utfdl~DO^Qf|Q=_j_^aM$&}(9slUxeC7-+W3%5`|EC6{ad=o4AqP~$5pxa zZ|nrtLg`vZv+cIl-^Ye!27PO4yB!z8SrEO{#T0Vb!&Kb#>qWgsme4IteSW8rolQ5h zIWY|bQ*tMpNR-e~x<-Htv@q?pK@#;@%6_h3v>Xl|eWj?4Y)$O0& z<>%q9fsvUy8CNmo)vdPQrq#n}Gunw)(%Gs4AwT90&Qtrr&Gdi1zEF^ffP`7tExUp(dd0E4wMV` zcwaaYKX0$wVyD3feqgHK;zq+HYL&+#;7l2yanMTzd(h{C3)y3Y z4e4{TjuZhmoe$58zhQU@-{}B^YODt(sC*)5Cf99cz3 z>=0lR>KX!u@P%(T^NBqXFtXkt??ZX}a;-MZu+Fw{Q+phGv$||4u-p6g>Zqz$aoNhf zLt6iBj+kXiPLPWhI{J&verL;*ba(qU+UqzU+{m358O4Mxq|p@reLS^79>=s2Y5dOS zZ4$j9cp9ibbc_bO*O*dM5b=VY6C$ zgsTIv^Z|=JL|GOWT;)V0JwASdxPm*jGs1><>q><=-hzeO1&wClpVC~1A$9ThU%<84 zhW#?dEI%qt5)HH99q5LV{`tM0DO$ zL0lzM4F`3`E|spyt%jQ~YT)A5(+$RDcw^6-7kat(L!fVCHu|(f%qXNCGTBsW3UBp& zR6G;hZmfY#vO=i6*3Cz#*RltGQ(_@z04mkK;Z0^*Dyv-=N*XTa*5E55U}7TjMPqtu zhXd;ctBSCj(3dHJ6d@1W!}#{OmH-%hTTrSSd>n#3jPFqO+oZ$g?c?U2N?BbsIgQ%= z(_}^37nQ5{c}?|LJ|MkE#jJhKOSEsYZ%{~+p)iE#%{B1FON`B3xs+X>U+u7%$y1u80Hw$ zAJ)Awm&^9>7JP96PDeJqb%tk%x3wq8U?M+leOrlyP(7K!5pZRX>Rd3dWGEbsWK>Rc zZK%l3jRePXp7SQz%?P50QJ+DH=c8eqE2^F3^Ei@?p+_cjQJ@S+km=(zb2YH+)} zBqBQm-Y>z*5)j~{Bei&mu#a`XZg!M{q;8vGrCE@(yHfa3m~JD-r|9EXLvK-=xr>bm z)}{`%wwGnl7!WjvHGu~!L*`%D`g7_Nk2RbsomY(qSDPK||M^PCZC=Adym{sc=f zC*P2)490?1YOI`}MDpf<^g(T?f%P{v0Q$H|Bc37Egc>TTSP;mN5n?1g##!(3B67&+?e9BsVRj1X=u`o8ssU!tQ|7m>p+=SeS z#*6aY^ASLV^sE)QuUFB4s>G!j*Vi8Y@?vp4kAl5U6zycAncZAoAZ^(nhAUv{+O-IRAtQo8eih&e|jz6dH&99bvr&z zVmkA3PR6BN^PhKR3i721Zdv;e;0YFd2&Ng-roEL#V`LrT33`8e<{A%+oJjif-2z!y zfk$%i5ixb>0^v=)ZUXqm?tNMopl&QXCGJp(j*^jajTx64u^-+7__Rea6fONlBi9ds z<|j^d@A*u_R*U|9M(GFkzzYk>9Jhc+40tV>^7cJZxp^jpU;Q8fXKm}W zjuTe;R(*Ej;0_FYzKL-Ccf4Z;_S?d2Kp+2@&5Q@~&$`D!*N#=_*~kQ9g`q;^Hv z?ZTb+nz>3aZISbp8w-gg@=h6nIToUVV8pPMUSDz~ImpclVWL&(Oh(!OP_Yjx`6kq6 zeM2i`gVBGrReY!P^yQQ&WdUj`Y075Mw72j|Vr_D-j=Zb4QHJb~uV++`_3w~Oa8}5m zfn@g2>CwMH77kPL_Q~6!ih@PYo{*V%zZ5A-t+-O-S6E+K?qPDlRAzs}8Dt91k zwsjFh!kk!VGarG%D{0WxdtRyF_IpZ^*moc{rYVdqd zH?Ub=FPY$$lGN&(p$}m8JKZTj9>p=K;KcB0W#7X64-cn-6PLa4|v{cChR-HvFFKY zcuV6s*xHcpXlm7_POe@)Gm;kb#1+e;+|Uu`;Lbd9YY_g_Y<%DGv$`^Fs7J$QH3sGCxcE zh&31A8Q2WzAhK10;Y1ixutdQJH|t^L?7?is7!r9+nHPsKspWY+EyF4usC+(O?N8Nm z!5@pC--Giouz%1sj;kIK@6$hq?n8GrdA>OT^3oEJ6PgaJTXCV&C@2od9jSvCc=a88 z)NPl*XjGGcz7Z*U@p-oZ)oTVGIHFnp@BvKAFNJ0Sy{z!bGHZ9q_!@chT80_(72itB zqcnPsY2SAR{g6gz9p4)14gZzg0eCB0LMXcEQO--cUCCDnwcgB!oXp?riI151nKR;O zQ+vA0F@u#ek#Gh^Qm2D=uL%4!!81QKoh}%%mL+IvyTTUjTb_UTneHSZ)RRJWa|7YGrrOmc3e zYs+NgEdr!@j9z_6Bis?NKD_n7_YG)2;CEez>Hkb@s_(-!X*Y*O+O2)gzaShRRAWs43P950;`Kno>>Z?CjbHmX$~kRe_pOUo%lpPV&xIr(yo7Ls{fqHlyj3^+ ztcj~GQ|bQ8J=21&@$P1PGmo^ej#JzHQyYi%a%5g8M_L@oANmXLbV32&Wl>BAd3KT( zb2%j>>NC&N-D{$a#%Oo8~H*)ws@;SosttfhoC_ zD|vz5lu(Q^6{5TjjGR>$g2Tfl0+r9!(EBzX$XNKDplSDq$&K_l?^8+Gjer=8n}b-@ ztC_L`dR5vmISfa>1c04U)j@K3bGRwZ7_^)10+-Ti$jCs4o7jk?0rhr7OF!7WAU#D5 zG$VBLy~x8MCoF7YDEvTwOB}e?FRz0!)L*=KR#mKGMi>&#jbP5Ml}^^7xbN^j{+@=W zsR6U!+YI7@^7=lX$R78~%!l~qMIJOgVohYL!5gQB>jZ?aZ0GX0rWcA8W&TiJtTi!K zHn-b~q)F|hHueTQuh|-QZGxw|x6U|s1KmODu?r}=blJtS9)amU=4)<+he=L*nkqg@ z<`k+rIBfq&!Vapgh-~)oFY(QCr{-BIh4AbH?vVrjC#U=#+auWywuzB<_hus3hW;b3 zu2Th3Ow<;p?q>9+F<-ygV*(J(6?l6-G=8nGVC~VrdgCMdC&+32Xh1BCGMUlj^j^?1 z4uic+4W%$P3`|%lIEG@)aXH%mdIP=gb}`y@asB3<>b#uP1}Go2Kws(l9{Vkr_uQvv z<#b_*KMvIgC+@hqFw{JqkVMAi#ewUkpM5(_mF0_HSFoTmiIHLjhy?gRBc^=1Z9{Yq zFx{h7G4V%_IG$cZMC#+i9#r%qLx4VqXb>^$bl<^wul4 z^2B=j+?(6715y$)pEE9m(b{gABvXFqVA?AwI`KTXV>+;h#4Ze*pdoCuGH>rZP6Hr! zy=n0;L$hubChxdy3=Kgl*al5acX~h)61^r4>T`Nyu5jr)v1v1tetbe^U4Uvlzk|8@ zKl@43ClRV<^y{JJ_+Xisux0_&T|lISOJ`G_bk zqV42T63ZyT-31owXLp!K>CnQ^BYU;q6_e5M_@^JonqjB=dui`wInI1G0nU9AY=jmC z1=dxHwy|YsEAgLe^zW|@wc-RoPWhFb*-~sSUx}oQ@|Wsc;j%3?aj^5rSb(slTla5Cij7f}b4jg7+zU;0cg?e#@x zhY1J*2E|y3wN3=&?J5Sd$x%pDzwvgQVsu0sPcI>FLNEIy_m4U4xiLFKj|uLOts#T^ zQ#JJoIz9aah}#z|)&m&gdjakD2e~`iRvh?%(C~#t7C-NJ&J!I14ITYdgVM@xf74`e zwKSr|s7c0Xx0T=?JwGYTRG*|&sa7|uS)m_lpAD*$N;3Dv$PZtIL)Se*&%49m8X+IA z$69Uv!PKOdB|$ADhm&lOkD!>5s47f<4bM3KWNS0ry4PL%e%J96mVH{mq`hP zxa(SRKz3!e!N#Z0*R^6z*D;sV{i`5xoZ;|wR0`wc&YICLa6VOU@%9N5a|I9>E zW7piRKsOGnvLO29;yAAaLkouj$h=N$8dQ4uaY|yvR84;v&R?pBfh9*;4}4T_QQ#>M zJfC0b<6gtSVc{$3zJJ7tx6#s z+c2C$TGf$FnDnkFML2?exsC!XtKar98c?Lygm>U$ZzoY%A-~LuKd%F<3L@VmnjmX@ zrgeQ^CU^T-aLul0q01_1>8nW_L(89LHu^YHa_G4Gx2E+v-PJo2*L4)QJG-M;tR#2hcd-2@tuTL!%5drpas@JI%1jP@~e^${52_&(%dZu)W?D6$&_ zW80*lkob)HgQ8`jvB*^4oK=O$#=+?3DeeIi^eQ=r*())cj84a%au?vA$lIh#=5h3X z=vY`p)Bgl4AH1yj=#SdBnNpT-|6x$^ZXPePl;wV6-OHzwDHB(0#6Wyd|Ij_XfenG% zSvmE*V}#*K3$&u>1i5DG1)&t4<8>fb{4esf=@JT?PxEb0XjuyP*Y_pgYLY8b;MjZs zAz(n)%ics}6ZrZyex4;+c-~XZMAG=*(QX&tIONp)t;-)q8ehF^`ViJl+8Z0abb(Uf z-r3HFW`_|yA7q^rvRZCbnm|#J#eu|TPjGQwp&72*2144{BIR0weQ@9AWn^g^0n{;6 zQ$!JguqkIxTfM*vAQE6!}c0jf*r3|`$NGc4=M)Z8GiikEnAZy-#o%_yoI}c`oLNvO$ zR&H^9lSg5p{d`t#nhyj^XG|>Pv8}t$x{+QNXC!uH*g%1ZO!!x{b=#1FZPRSZ6=kL} z%53M@`8lyS7_x5SLAePkaq(U+QyfY3j7W%av!O5Ks78MBHED%w+!7sEJKh?|=-p0{ zBGvFIFFgYn4U485f~Rl4XVKi)7`EeRsuTip%7^OMTF9YcMQdSQWm8yR3Iy@J?S))h zBKH~!slHw-NMNs~$KLEzpceVfQezS;zIXryQ3AGw2kX4WT4^t%y7!372lPCL6P)pGWl;oYakyy81-&r>n!SLV z9yY)qZg5hMPfGrTj*ZR4EYZ3OlvM97J%+qp?sU3ML^NwI?> zku86-6Qp}mN!O&jovG5-fN*}OA^lX+w_-J9xW14a!8_nN@%h@B;O9#xgMG`+NW&7m zxtfueP&xw%hiq4~6^y5!$il0boh+EHLcYFJsL2iB*%;mB3ue>V_lRFLt;=`N&YJEa%HX6J&O%Pbo{1kn zVzzJ-^YPUs^z(FV%Y?QN?g$(wZgig`j~ewQQuT_}x^uS>;Q7sQN;%kk)iRH+ zAcVMj3oR^hLzLcJm9dU3l>qFDpUQmPxm)pB@Eo(E`*zbZL#a7lop!|MQMucVzxSnn zi8xqRa`xFdts9JY%-e0^vr4X{E%kLF?IO|Qg^_`IHD;(jn`Oq*YN+9Y$b*?+fb4sxy+PX1y#dEm| zdKK~JY$7v2>!s=#)X?JzA5ik=g{OK)>cZ#By|*ZR68UmScjDXXpfVF=!#}BK$Ke(J zkJSo#qrBI4@3p7CbuqW-1zxpLVRV1-To)_kuyB3aNM|0@^kcqHSL4mXC8l><^SD>B z)Xfc*^l~VOi^h)kcUAIiETDMFnA-ffvwh>)Vr8UhK+Kui07UDs& z{AEo;-F(EppyNe`5MGrX^uy|qDoAGvhr^&q-HJj{07!!&l&QSgOU7_=p;T=2;H%j6Oz*3iL-W5K1ikiSsUzr$^^r7A#(#at5`8K z(0;R1+UapA**}Imzi+MKy}Kb ztUd$ppslVy@NkISA?KwKiA~nyW;ms7EdD4h*gh9uyX0AB-~Yfp7e6<_{3!n7Vq3MS z!m={ewXIXnCB7nYa2eb#A-9NlTAS4i?L)NR#=RYvpozcR>a3Apa~5*3RqxpGt)w33 z*BLKrmHt?rnXzInF2!g}j2@>bcj5U)i$RiC{Wq?~KXfnucWnWt|M0u|A5I5F9o_e* z?@n*@&G+}u2mmmxoeEfxgC71bWPoWUD9V3(=^rWv|E zc#@OFX~x)hwRKw12i^EB1thv|Bm;gfpK9{NMzC7gN^kw}{dj)y`PupC{^7<@ zAdizGg<4Nf8Oc}+D%apqTk6)}s^W*VoMb3khQ>9>hE?h!B2{}M8K23(;&O}_)t4~3Z zAggX`wVdfOw3djLlhtJhjg@)uu$L-(fmb`qiA2 z26N&}ig-6DX%q|7TgN_kVvhckRLV8Xh{=+Al~jCibFzkRm`Otfj7mvVGdjkZ`CPh_ zyNWh}Arsm;HMDA#q0Y1qO{BQ-G9@pqevhN!oz~+sKezOM%(40&-#M zh?=3)w!kv_A7A-$j5Bq4u2yStabFse45|}!9!q^lXRVxmqv&rs{gXkbWrYM&!TBd@ zjbK7KXb*(peBz`ig*la^5SM)FM^Fze47qSEMA?qT-&gVS{;-9NAR-eV z7%vQst~9x3*Hx!BS0BU96?66>w#zl46?g*mo!C!Gl=5nM%!TiwbRS?JNI4>7k8T+$r^rs86UWeh72zac^4X zu_Cch+iva*=9Yxo5zpCBoqA|T9w8vSVq|a!0OJJ%W8zwMy2&dn45|9?OT*K^_T-LS z=mmy2ne;X@Ft9wt!tpuAZgt=75;5G zX?LIm$pu1Pl)%yDrSEfXR#bf0nQ%r{8O;3Ujsk0pbi{q~#a*6N$k`cG_UvF?>}hI! z9Q?ZoVt#bZYrl)kbapeq*k;Z4dT<<~U5%a2RJvMhW@{P8E8AryC zAt4SuoRwc#l5XcF+?@OOVj77CthgM1BWo1uaG>J>H~X#wlx}7I>%}zCTm0)Y_o_wO zV+|y%_HS6PdMGezYNWOAPvQ;*x@bc*QU^qK#M--HjM~i&)G*!L<|AqeA{Ti31DBGp(Y1hz9TBV>6?`{$-U(3&AHlX+0Q-Iyg9tY>DM=y$`-# zWt!V70kpV5rZ?SnO%;2$YE?buz5bjss2m6l_U!8x7bSi6yNsOmTyQfx;Z%=7T(RNu832?6+t`rB@K?Uu>hCg7WOO}Exsf_ z!#zGeDasxO+4)DIR0{J+e{c=bU2U6B&*Z-+9k#jZBSXc!GPzi57!5H+TG4{}1{mSS zdP9cIvvI~`&AVhXKB4JPns zrnw(Jgi~VS5s0yJd&3!=^s>bR$)5PZnG+U{#!2h4J6dfQD4$AZcD^-jdT^%IyDlTJ zP_`^C1YAGlAjMW$=_a#rhx6H-HzO-6j-Xa)4pM#VOojYT)sS7kf`O5KZV5r6T;f+1 zI;bxRQSoeq+N>}(Fui5V_yIU^z5O?-Ahv(V`TXzYobf;GsQ;GpT|0Owz26phW@dJP z0H{L1RsT}I+5W-){BP?w6FmpVKMhcfRXw#9RZwTfrheH){Dz(wB9-SC0a;vEscx|< z*VriwQ-nWa=`xO6@ym-DGYo+m6he<1o#>nZAOsFW7x1#FzHV7+nRLcWqwd%-O;@#KH0sqOd=|+wj9AUoEjg2 zqAqx7M93$eWlScMcyLD9IZ64}1`#`@be%~dtI{O}-|$L-WH_m0r!bvjLRod6M!#6j z4WU3vq`a_+%l&mUyxkiyFJiVLVxBm^Ki`n@O0ChfsGFLVjEIJmIYOu2bebHDbl~u9 zjpyU-W)vWkn*l!>N+xo5;r%Mj`)QJ`(=c-P;3V!9#LCLekg+22;I9Fbn^Pezeq^ZN zbT(eD!|SDIrA1l0QcQe1&modo1|z#9dUqx+zmCjHqcT~$RnHTrTPP`Uz&0Xck*Ltz z)ynp#)S}tTN<-rwQg^565gkukBFeVuF!4O|b%0{Y)gb#NgC-NWo2}+Sx7+>0BDZOZ znO7rqK+Jq$-~dt4`x|WBR~vr5AD#)q)c~+Q?v^A4z7~EmY-z~EfT})v7G7WY7lMdc zI6Gm^Z+wL?Xu`>uIO!?}qD@k9CJuRWB4aS49ohS=MZFWf6-u}SKBY@lEd@@>6DrAZ z5Tn5ET<`M0RH4EH#L=4Z#{7k|lk(r-D1K-|JRWEjmw&q?eco`(+;Nnv5bUI3qoX_{ z;LyoYUpYA+_q8(eVKZ3_sSl>eXC{n(iHX`n1?fAG5R1!Z!UM1@e$r8b$e2!WCS*GW zcbHD9F0!tvExvr-@yZ`u#+>6@oUzh70upw?(gE?VWZTFK#L`tQAF!G_XzVh9I}@s{ zglO1CtO$AKNX-3lx-Z{I@0LAt(w!}B3>$f6uVqZ;#>9>yB(k?P(63S{av6JIhSD#e%>i1#jFLBO@Tg~9X z;6zf&?qj33AJ@GU9@o1+8LVGABIS0Ya-7JI9yRibr_FE3`LN8E>MnbY1`UkvI ztjMK#^W)6LuP@ClvA@zB%Ok^T1!mVlcW%A}q3{U0Yw}61>0a01GE`>o!UhZ@c10Td zh77yNkx!g9&SfLy-_0R-b{PJFc5;QQTP6KTrD-DTxv?^p-Qk-<*hPcDA$Yxia3Zma zQz~{QbU_)T5tE}M`;IOG{f5Hm3T(PwQ$`xtT|t`}WOn&*A)xN^=_#I`=oVA(;h!jf zUVV%kgMoGt&FgS4cFU^{ZEVi2yf&G6DHe17{knP&rZ-LDHcfhwWRT%ghcroI7jq%+ zlS1*s&)dml?RYN=fsHf^1h$eKy>$9Tx{!Jy)}FJaNg0UoxqOkJBJmn0Rj`j zr_GD(l+eB8eZNWaFyHV>?0$g{LHKx)G?=r5|n8MUxJfnw>LqZ_y>uHS4 zo4W0dO7taX0$QF=76z~x({0zSZKY90{ckpF_kr&y|@GuM$pMn&_Ky# zcAk$G7|rcsPsq+F+eath*If>N;M=bG3)3DYalAmV@hCAu{eU5Ph;~FsiO%BqB9w&T zqKi{pxEES_VY^;Kcl)f`xN-($wl51JB7}@1(U)w7?zeNRX>Tk#iHSP}toQz-`)VjqekkjYbokG5V zOOJKz72W+2npJJV6XvcU&~ySj;St{JV9rlPjFHnHw7+`25Vv2ye#jmX!1IWI zU6I2v2xkey-CRPe;gqap%%J*9iEoYAeu{zBRKbwyXQUGrX~~8%J_DUnNQ2l*YYKG)s9wxp}aUXDClz^JdGnG>q^b zo{m%qJT-%rK^ztXj+0QM*yX*VR~TqSPHMCU(&&^17b%Ne{9%_p(W>RMozbhF8;(Gn&$W$oWvRNuGNR-bElfRfSvEsuII$^N*${ z)*<(2g@aa1!E5SgC~15oG|$4@NMBg-Y5RT$hGD72@Z8;tw51h0gzG(g z0{T8zGvST;O!r-ix%%zhRv~)8dTbEkyVvo?7ONnERi8pNzTfpl$My<+I~E57iz9wD z0&G0d%JvH|K_`ZmlkHE^2lwQ;$9j>GQW;ZqEDs2BQN!N?t;#6WV;aZ5(89?UdJ~Ip z^+akWtGyY{fEk|9Zkgor*`vMkHjBV+0=(d6PU76&1`NmQ)e}d}KlDic=ue8N%?*4n zZhg$zF6O>@hjpt(klZG*EmyBvFRg*fI6XR>xP#u3O?x8{Mm{DyEieA>1-9LLj8oX42Rt}Z{fR#7Yr$#=6fQt7^ssj~6?r3WC!1z<=EWpK{6_JPn z3QRd)$uvA&w9t5S&L|8g@O()WUr0i*Se$1>N>JZMETAx%VUpyT#e^duGSa2qW&qj( zR%xIlXV5Nh&yJox*tSb$B#p?Jd_p}u$K+P#<+Czg_B&G4WO_(jjrqE4)wEn_Ny;<5 zxF;ZSOdFU{iweV19!60+be$S|Dwr&yBO>9RDr$iVWZM`??3X%I+2s(}kBsE#W%9g4 z!n~mAECGvPNx&d=PE_#(K*x)UNg#qrF0 z(LVN2zf_5^2SirWVxQa+Ix#Nt!K04ipj{H&R2C}XbFy%TK}&CDB1{ujlzbiI3SWuP zW>?Ubl8!k$Je|V63Z7e2SW6x}o+~h867XOIYHbv`q(2YYBcm*09!mwgNMY!t?KzZa zK$Qk^4wRQ9mgRBF6glvhjQSCB<-`$i+uq+ zxCxa14R`$G8tngoH2-0+_&*a$_&8=WJ$(r?HO0I`007J@;D0-5WBbSW^S=f)?9Bf$ z77bQ|(n3=0$VDd&gp|h++=!a_C2~7lXwll*p(2cM(MU;YA;(|PPYyVs`3qSvF$?~X zg8U|w5FZ?TB24*C*<$1G!I{T}OKt35aATw1`HaQA+36ba?A+PA_4egJ%HilR00VN$hf?glp2XX_6ae=pViHVSbR8Yw=RiXMc2B6tNtK&O(Ob6<|k ze5DMmQ2FbWoBFI<=+@z{fH>lq`qtFZezVf>{Z@Mp8QkZXMwvtii(do;*bt_I0_5Sf z5OMHyXzK9gv9n!B<>4{05whuL2PbTv`Mjhgv=*VPIxGu+Y?q-uKT;_B#G0ACGG%g& zW<|;e3W<~@y_KlEl&GG>4Q!JvB6u}W^5;Ts)@$Z%RY5ETl^{T+vjm!nWOCsR)6NSa zmqjs@#NXMoCAvnXO4=;W0_ zDG!H>T{pgcV=3YLA{>e&7(q%5Gaqsq2)!jSL9|753~L|q8ps95M@5nhGahm<0IAPV z6RIK!2!|((0w*H`r$G?8Bz79IAq)v4LM$e%+dmR;TP1M8e65bhFEE`#z58~M8m}L2h^D<8!o;)dC(PK(?8J|Kaf;`R*Sji z>R5k?;nv2H1Bi$K(Wps-U9+@ITI}pnf{L6D1u878Hd&C=5HKECAmyvA_+ zs6>nP$E@)Q-?5X$ix*9VhH)?8%dH_{CJWY3vBq~M_p(CY{70Mo(epW~>Kwn~z>ZuF zvctH;)ph@RfYFA*2b?DR<*5@duStYEq&^?d4>Tbdh%VCo7%fWzvww} zP*e|c>@<;z@^2vIaTuPx^1hiM>`HJA-39HMl z`NZ@WlPxeT_NU^g4P8pQb-&kJ!{>uo+@vf+zgH9963aHD%q6W!W;I7Fc7zHErKE-( ztC<;t9rsl3P6Kff_&~>cww#DTd-gEbv0!EX0rWifb~&?4@*XLK=N zlA-?JB5OKLbi)QRfAmvFZDe5e=|lS}PY8k7OD_-T5`aD1m*WQT@s8?lTpj|H z9&u~08*M>g!>BbVy)H%+sT$q+X#G1*|&z&S8;mZQ!(g|0-2nj zq&G<;p25O_y@^S92;F!CkHE9|cmipeo$R!uz3h=3%N5bIiGWm1FN2O~=u4&Np=+FX z{1(_0^n1ZIMHnZwv@JEU)J(YNan-K9UtV>L4OK}T+l0Uy5%h*cbh26jwVcB;vH*=Q49w>Wj8DB+{(8xJ{&OI{7s2M?}H!gdG2g^^=Y6}J}riG_(Z-00i8TOQ?Fcgb?{ z9|#36I?bm-5JCbL%-yXileUJDR?KYDRPP`-){}610s{5?^#>}dEW#}2;j(+2XlRt@yo0~pJ%?e6=t`YO0oY|}GW!RfvkB_d z-W(>V?}v}(kK==(X5*-^V+5wdF=NiFFkIH>XYKC_M1gF55|2i`1$;Rsw z#@j-yM(aX@mG{{4NT9j5-Z@`S1lj0{H}wIGk%y!pCybKdttUFjhX z(#j*)4KG5bmD~gUMV_-exj@dbiEPe-Py4F7dvY&!JLrIa>Tzm!pbD;o>mX5^UbAuV1}>eZ9PFqe8n%@t)dK&23e8vzwl#qZ-+`1nKK= zpjb|?xV`5D`zH`*mz6&y2?fP#;MSlm-C$piTBwrV7)iB2b$MM%Js4Xjx->zMTm?5tb}H=|gd-BEQ5TmZuI^Z#_nHYP5Y1Cn9|mw!F}6 z8sZdT58H_R{oU3Cm#E;;Yg&?D#|{5;c+{DD>%;3BijNzH<7}^0-_VTuLph;VdT>go z(YQSZIH2H0|0g$5>c>{=KCku1O?rNVul-P$8}Z5wpW+$X zQ#nPi{#2Se+ng~iJ||pp(#%)$gJiLPc1`;v?u>YJRQ~ZkNy*X%63x0%%`!<4h2#+0 zTVS3AV_0QU{}`OI;wWfCDSF9cab(`m+PVFdoM~!X7r?aC=AgE$(?|L@wPonpOmE0p zF8xc1TFL325){ZTB?>3L2B5?a;3w%fT<`cR3-@zA+EnlkAG#j{wF`~>lxSKXa|r@G zoJ`@%WNafDWoLzFdQA<_I%W+gB#5m_#6rXr{ryS;aU5Xb@aNTtVX|Fhg}`uqx=B)Z zuJ%Iev2ium54Or&$#PPhoeP)wmV-ee)=*r({%JjBa~XI`wNYVEq0la4 z-FY{oGs=2!_2`=X-9z5b^Q__us+p1)_}tSZ&1j`5K+CB#Jzo;yps?ZytIQz18`!64 zv?w0`=;|(x2De6!(BO8Kr><7@`xnt0pY0f8ef*&@KPt)&Fx>IXto9|%{d0htX)V3# z(6W<&QBAAe3lk(M%Aer|1N%-(5sF7R+-1^sZjkhhPSoA)kXMnGD<~pYN+=YiVz`7cKN0Za%W;V}UoRhvH3>a!OkCIkUp`^emhF*9n_Szx zV6)ilH1&Z3Aeb-c76%YTbRWIv)-IpUHB+ytZl-R~P&QB9Cyzr|hMRJ0Y}H65s9KB$kq4eD_-(-op9)jG1-Nq`|TFbhNz$%bvl zxLVRJDJp9D%8UN)DV?P?2b&oPYWdVbAX8Kj;GHfy`5d2{01tK%+gcxJQ~jpFmO*hT z_0Amfq4$w3(kaY;8oJkFMx=b3Li=?Xdk(Z-&QQhPImW)7qJKmo7K?t6qg|eL?%q31 z=g%{^EN60{__9()mswg;n;2d^13u9#1Ax%NM^Uh4N=)$`6BvUF8iPR?J%Y4vazg!i z$79u1EMyz#f@uZzjQK{FG|sEzo&aq#&*|!JpK5b1iCEA`Qz2c235FGq+sq`f4@~LClcP(hgQhq>*yR^D=wV-=D`FWu`^K5ZiX z(`|Gs%T^N188K)`Z3t-x7|jUiA|%J9jNII6oZ(7)1eI-tNsGMx@P>Txz>=PkAms-Y z4PG9Mq}3Uz32$}~0^j7z8(9c!_jr`>*0y!|71I3K-DUE+Rn6W7{PWvG;LN{kfGR2s zSfv#r)mhVBl=j(-^wX++NAmTSRD#7M%US4|DjXjLDDMNy`6-W?BoZy zT}zzy-vInSh(G@afd3EKmj4gn=~bAum`e-x`cp*!@Jc|||0Op2KlYvfEq-UD|4*ry z=)a^QBvsrU_yiDffrjYiD(_BH*d5R6_P`87>R;j6fWkybq z_6)}HlY@InJftMZm$6bQdnAr1p`##Rymi7v<)GsI4QJ{ z#^PN{`==&ecb43){|J%AY+bIk~Y*pOh;(wTv67 zH98bi@KFUYm{co0Ft}4W%Ld%5y!SxGdUFv_cugL|U?FX9q3cu9&smK8rcy4Eil(L8 zZ*|Xhm(h#jNau{QeW<6WhK%grujA9#thZJ}Oo=Mi!$<>K(Bnu0+#oxA7-gd%eKMZM zb2R9MdgiM%;5zBQtEo!)1Kv14p~oFb-9dz})( z-j(sC>MRl;p|R@Fn2x~)u>mQ}f0;=mjG|G0P_{;kd+p|v+p%rS9`eWKbsBvv;Yklzrra%ppCYGOlr?{8e-*KvXlb5g$OLdI+RAGPPFx!AGO`l^@1O^7`HwaZekC`zB1AJ zLkx3hmXX@5e&Zl?9 z<_c^mQhZZLJ-1%6l7Yd)+SDeubZZN^WR7F3@L`sEM>k70N)Rp<$5ua-0(Nf*r)e|v zOWfNX^QjHc7u0<>X^Rse0Ixa|RqZfEaP5~Z!1rxFcfxcYKavlfVU$j0R=fp3>(sb4 z!yy($XDd_EmnQ>U?;!=Z0}n8t(|O3!Hh>BJzMa9NuB%w>meucdK)L=0pj<4}Ps`ax zhg9i0Bw;ew8#ay7C&1hute@VVoD-x6=lRjO1s{xDL-v|id8_!qre)d^rZVh#8mQ;-8 zqY)VWLms(C{ExDgB_<_k(W;9vMN$d3B;+385R?wEh_$gk-p%)soK${bw-4QTF538H zwKY1wK^()&^mYorOaO;!q1y3{;+NDbC$j;j0~45E!O-bKulV{?dp@Dru~}G}9aJGS zLFEV&N(-!zX~m#I;DHz5Va~OyF4Wr&R)TM7tK$1X(&Gfo<3Nu{ti(m4n`^S(J+55C zgrgmbBE;muH9;dHE}tRYMWo*lRst>QA2DBdZQzFV^0L4Vac*U8{r>_1S`BucM--{+M_Yv|F@r#U_qibzlk>yd`XTR1pQAv68q6u1LzYJ=*oTk~9dk-bw^dlf$VRqx(0us@Mi zi2R8_RzyCKsy^^Q+5u3npz*ItQD^03cpSTp?_b5WTEloATBq29Cl9)r)!Va%AhIQYMa@ zWWuhqXXe&{w6^I5*WNHBm7?w}_dcg-Df4Agl2U?-1^^-+B)E?>zIjIDB?)~mxxn0j z_uZjTd2*pfBvx`dB|zb!>(R^ll5}28<)TS$NTKCqOq_#ZTm3bMp|y_Q_2l=n2*0oo z%e(Xq17wL^?ZfoxvCfch``m|Z=1IX$_w z{n5I4QCNgtJl$oyPPG z)~ghTU*lJ^LAe1rH(a&3d;zEGade%*agbmGuij?k=%gJbbAX(-j3{yzBMfYm0T1Jw zHik$P&un5elwT&?+lu4sR%#DgNYL{#{o%7S`O)*@enSEW3<}&wUsX`vp3K8P%DSPM zE=MTgm|6G6ZEE%?^7?q+CSZiWJ&)*zLb9)UGv z@uYuBwruteUyq7>0RSqM2fYbZ(GMg?&!f_ib#w=?G0yxeEe#&QgN?l7O484}Y>BfM_dW(NyF{0*8tq z&P{%X){*MNX>vQ2dxK&9WrlIccIZpwcMYxlgk0DN+VV8{kxsGOZT{{e)TnHZ+ri?7 zcP(s`!a;lNu)XEpK%>ouz^8xeGptQ48XGuGQ)z_My1f1V#0pyDNdvMv9>*Je)3<=bZF!>L>d<79II@gK?Wbcv>BejmRcO^T;|TzhKEMBl-2 zx@56L5g#v?OS{giX9R9aShq5rUVC<5(&X0T2Qjb*)`$7lf}os4NCiUG@Rq53`>QJY zMAcLs&6r>VcFIQC%Q8#rm&QfzR#udz8uPoW6Dz*m!`KO;Npa-68{&nx#U>WMY7+Gr z#n?pE`0tZgT5X^11tE&dt*)DMOC9VsBp;KQuCCWroH1vvZRfrg9zcJEIh`M0vr)OZ z>V@1tGPBV?(R!Nq-tCm3+8yCO?d7Q`$n|-U!$D3H9?8<@Q)xrEMs!VduOYR0SG`qBip7S8`0*A6C3q*rw`SJ0FbVz^a0DNuFkN=i8{;|LO-*XbfeSTt`#POdL(<@DF#|>6g@0;3P&BQbIp%<~zM2yjJO|trf5&M0WC169Q7#E{) zs&VUvUY|c8zafgo)g-F6co#9l@xisUu(3Bi0cW*LsSjumqD%u!wK}BUrpyw}Q#fjv z{71JJWJ#MG(?vN3jY>eY?dj}~7#pdPP@SnO*o&Di825^Uqof$Y{lUlE$GXOg_&H{T zNsC{8pGsMf#oeYei<&4&X(%0<>2gMj&B}Q&lQ0dpjkgUiknB z#{vLI0kifMvk8BWOibX%J2~5=R7nNrq5gC z!ITpd68zIeC?cPVl%_9CGQ@>x1tMWr5eeGQ0kn-Epyh`~^qU|2x(sd_8gF*%vKc5pOT?sLn+g>Yhh`DcG9zsEo0oX!8ut3)jsESZWUZj{H zZiHWbU!45tH>@GEQOYrBgaI`Gb98!;3*T4LjVu{dho60#VeNxAw1pIW5rF{zh!OyF z`DpCJ!P?_zkrwp*LFva^=KTU8UmGRuWVf3;A|2S^Xl!rbqjpSg_g2)2Ew66sTcd1b zt}NTmsq5EB)3blAA|^kT+*4RyUX8)FQqPnDEl7&GI3=r$Ep z>Tp|Q6nez!s+T&n>MF;y7!%aTB$}&ye=GCYV&*2qi(>nS>ZVo7LHA-=7_s-$rN_=e8MEI8E z@Wa;erjMa8sn~P5yw)a2=H|(S4aaz>Q5)w<`-vh7$JAD>s&8ef-cF-+v6{7~fwF57#JzrBq4cv6gsH)5GsZ8E7aB zAc1iTqYbmu(T%XNs7VbVCnL}mu!+uVHToO=kYcLLT`;Ot7pUraKA(T}PCWb-&80$p zVX?Q&eI?cs1*>i|UDJer>y<+j7lHWfiw>!Px)er*j5ghdso#d9OkOVQ7m1{>xs4W-HZT3OMdvdwT*30$Fd85_*V{+dS zxlO>ny=s&wTQ`apK20vcW%ks-y%nfN7I0gk&t=)wYx+ILdHKa^>)po@pekG&PQ6KJ zwcP(~fuEV>wxf~P+O~$wk7=7opq6Hj%4}DtvI!3Jw9hCOu}2nSO=ZAYa@Rl`q6;kS z`^-%;;5>eJIYqDcSMhmJf=d)|m^~BSCE94^TLL{buz~Ymiu7U4Xse1%8eR%oVZgpB zrKw-(QvqTJ8x_>A8n}kWdujI+X4$s@O{XcV0 z!=aV3Yj|*F$VgH@cenaUOc^pcsFC;m3wVP>()=OnOeyMi})6=OME3Fb~c|+5fgU!#CkV=DFT0>3pa%Ym<90+w@BovcJ&W0>I z=R5{g!FZOGDAM5s9C!*XpK(pPr8JDHJynyBWr&HYKdR{4mkt2kKzR%pEv!f&^<3IM zsz-0D5*1+S>g^X5>85e3p^05g-wtQj0dtbi`^iuSAzGCU_1SY~2+hMr%?cfXsmzxb zV_UG)MZtod{+0=;btK?nPJlE;^iK`YPb9ZqNY8*{LS0096WGNX{LF5|(OUL+VZT+nI|JFR0Wh8q`(`Xmq=(KGi^PlIKgeX5lPm1i5R4|5;HnK zUb45cL^wT=Q%;Z{3+gWd|3DpcbTR*TF?QuQHlM{FHGR>f4U!oYlbHfoJdnYSoy*cNhp`55eKcoQT~znT_-%irWW0XbOC;V}fn9g&}B`(oS$r|7Y)@voUtxnOzYKsXj* zB(Y0fd8DQs^6{O)YT|<^aMljOd?rkkqs`vs0;TX+5Z+1LFVU_m0aC$(lV(G;Y{ z@({H15Q6l`Va`E4FU`sA(E{+i0vVkETQo$u?Xfmals~F0QkAa;)D(~+f=T6;6|m@O z7D0K41IPutV=fLL1e$+3U2l`F&j2;E@vw7oyS*Ks2PX$t7Ag$}hG!DbUIQj_ymII! zDg(zu&DEN;VvZx%PQW_R7G919KbI~GvZ6^-;b3X&uF+|D`GlEPRu1kXQV614Ix;m^ zwMLib7hLNQseRG53DmF8U9tz4PX?xlP5X6}OJCy7`e* zuYOsCgQU3N@Yq@{?6B~1v0QTXQp=*<6Vm~?$nytMRO20(@PC_laAM>;g^OgpC%|qg zad3Vd>G`^rLv8?4*^CTZVOibLvAc*`%ZE#zbL@iWk z=*tYC-czQINI+QLB2s_fm25A_&|<){D;E1KQMzj_H()KDm^=vlLX*v(+H+#uqExiX zr0}6B(c7vsh=4CJh){-5ESrj;pyt_8&M@UlSda{jn5mRzlfOg@+xHBg2iBQDTG_ zRh7TtQ92W*&zEqn=`4y^_oLKqU?Yv_l16Ujkk9$@@^E@(ybIbekl-q7-a%b-Sei^4 znT(x~my^5+H&hmsihr3&vH@4DU=Gyi6qnne@H(I`4y5{~C2`Z}@@Q}MKnPK#d#>4@ z+w*!-fk6xZrt|UsK7Y!@dxnLBWA7Y>bOnP@5wgmvqR{UP0415f+uS=xs8lx)xuR3R zBLYE3`1TjzShv9}F;wo(mBQ)Q;~9&*dm1J5)uoO2Y-sDCydRhL;h8u&F!*NRo7g!- zb5EzcmxWXHGIMhG4l+j4UlLSnN7nBVe0^#>q0{+^I@a0PcAjer^B=BMf3k{hT?Y1*Ehp*n;yrSHC{jB>T>zm z&R_No(>x=hnx|@J%xc^+dG^mI;`;G_sYAW@U1N}Imu|OA8*zio>#f=T}txT8|(i)Y$=s8O5JVKyohmm{n5p;4B4*5Z7b!xztxq@l-T@K z*0$|1`?v{@m>h^zH* zJs(%``rr1pKbC&pyYv5Jvs?dPitYdSuYZ^A{jY9@JF?tNPTecouEd*pWEJ=R`ETdV z3v{Xa6g{0+ApT*&?==pGuWMa}lrF`?Aab{)u zUt{y_R?Enp&ulw=#mf}WPrnb|dwJ5hOYLj!l`GqnGOmj{ezt0w=5x2}P08u^CSl5& zPs9E;K03Dh{Xg#X=hua?blELU6$}*eld`yMZ1ll>_K2X=G<{E(XqzNsgS2Gh6!T=u zR5RnGRD-mXWD{dUbBh!c^Hc-##1uQiDq{76^7Bi$41rbz>3im-3LWA^!GpkY+ z3@y#{!=nuqj1`Px@r((Wnxkw1HNEWZF(pxi?LqOr`+AR882eUc9@``-yY`CY*=pa# zzB9vag`SRHdTr4mS69w;TwWYXhxDd63Msj;sl|47Em|X{n;od9tgN(ZsbJ#&O3Tfa z6_x)#*Z!Z|k&$*xU}vUe4A7yoCt2}F0UiSOOn>l=6GmPb*ZLqA0pUrA;;@J_y+@M6c7!Gkq`!lJ< z-+Jaey(9Q>PmSfXL!KWesm95PuK)5X@AS=>zglN|@85c|S+dWw`152l)||XhPh+vm z%O;$i>zFC`=DOOEXAjFW=Y8uwueOzcbERJX{XH`-E$cYz-EXqqZHs1_@yEE&T4wp} zrt1@oC9leC{cL(xHD}r5`wyke>YZkJ-~4ne{o2N--WOtyg*{mC%*xt7LoZ!h=Hi}< z=bC3}-{|^x`OcZJ($&wrw!MnW&P!f>Z~e|w|Gqyq?k(WH!&ZJkY=`u_*4UiVH_E^G iuSOQ$z{~^1C5c5P6-B9OTt-F)My8frs;aL3Zd?Eo3&`gH literal 0 HcmV?d00001 diff --git a/异常聚集度论文0513/author.synctex.gz b/异常聚集度论文0513/author.synctex.gz new file mode 100644 index 0000000000000000000000000000000000000000..abb8f9b3439d8b3fdd1e3ea12c46bd43cdb70e72 GIT binary patch literal 48378 zcmV)%K#jj2iwFP!000003e>&J&L+u`CAP1pm;q|Rf{HA^UvfLzXd%o(8exP+FN$O_ ztB^$&!Av&TYVc|F09t4(Xd!5=g|_nwdI+845#jFP;ph94MM8j@-OWG0W9AXzS95o> zWB=X1{^2+O{dfQQ-~A8Y{psTmKmFmI{o=p*!yo_r>79M|AKrcQpFZN(Z~pk_KYjPj zfBoIZ51)Se<2V2J|MS28&;R>>`QQGRU;ZEe<^TFWO|UfBN-zfBNkY-+lPz z+aG`U_Tz8<@M$VE|J*|V{HGuJe^XKA=N9$t??3+j+fUzL|2-91{{cnfpYsP>^A9NV z{da$ui?siMB7gnyU*{s-KcL8;{&;)KpFLnu)bD=!!>5n@f`-vqw`e_0ykzct4fse)d?pO8n(-e)oR7EBr2^Y1@?`>Wsm_A2o2S)6)- zzh;5|@z0-F;vaweyD$FRZ{Ppnhu{71n{Pig8_XE<#ee$44;Z{({O5o7AAk3|kKcWI zXTJC!$DjWJ1%3C2Pw&3?_b$}<#lP7v{>gq_?YoeDawUHqV$8wijHW6%mzcf|rubZ| z`P!VKrKD(LoJ3s?)s*tJuesD+jxr7os)e_vI7U*Lr-UHz{YB75yVas?OtkLa=#srD!q4hIE0x4ZT%L#=kMjFT8(^ zL38n~m)~7>t!wt**SB7u^LXum*K^5FuWe&NOIv57x!MLb@6pHI5XXS2HRW^AJ@I+i zp<$ydWuVvZcq24jdi-9E#XHyacW14~Lm%?ad8oMf_&r7z^psDwx?s%X_gvXldHlZC z=Kbr_vo<5TosD&xLeW=__N?LRQ#Pf{X=;e)!tv;?+I--1ZK6*ZlalM`<1O!{+T$%# z#Zs4D%^qWj(?!I0u%_{g8I5kL_3fi};;3fpGS)YXbuVLi@JC17$iDe|FwVs3_h0OP zfBDR{4E4;fE(EiaH5}vvLFJ`@E}A*}n5k;mqUC~1Eg1ZEf%6GF)EjEO2yOIFG=5m& zt_?%Nw@G2IowK(&Ri#}}3mD~FZFIznju_HZp=Q?~a>5v`oBnW30;~jwMbfxBi5HVY zucJ2DII3=Nz2JmjkGkJ#*WiMa+H7b1I}2?zK+2Ufz+T(Ait*=^cBmO;OYMwqG(dz_QE1%R#9^rWaKRaiX)sm6 znDntecmbo1QpVDH z&)93Y7;9mXb#aGkGkqY3oI`>od57cZ!v+mdly=FS3WI<#M<={c6@}CCWJM_LgvF>l z3Xh|P1BRE|YR^@8!MiF%pEub3y;X&dTc|q3u}K33$}e3GeC%TWR!> zx0VwdVOVoM8sb>!`d50`B^c}qPRD$vV6-$IT?7n+0iz(OXXE2MPkt24*T&CVcUay!Rd~VMDuh(9Z|zR7t~d_RF79bC_1Vm4wq0D{KBY%Y z_^q4mwG;Lac$R>%`!lG<_1R-Va1r|jRk-sZVzmkiPFzvtn{!v}c$g-%M-89wu7-RxwP`At^X`TVkvVjxq8eOg!6R zXqlSjvkR-n?>}trq!+xaLM(R)ec+8Mgf>mkA?`3ZbBCj=Fk12gyHSOy;QxfSvuIwd zH$oeO14~9(;jSGlRC zU_u(=4xJ;76&c&iY=VMQfo0;1f-8&`^bG+!p0OBCB6~Ps@%9|4dpKj`mbh`+!^Kxj zQCY#g3NLtDg#|N>k&Ds$vy+-O8oT)QJ2tm4SL);UT5C@J@jI%+7wl!m?`vycuakqp z8WWq|20uO|oADvuhEQX2(}(a7ILxDs=P;S4=4Oavf(fUATY090DGihQ9ZnYsY??Bn-}K44H-|NTRI z?0BW?vDue`-3aw|`1!))hS1|hBD(lE-i`s=r0{j%)q{}5KBA&0e9g0|T90GwjokUO zH9V*bW&GZbXtN#X+oNP2N233pstyaz&)8wFz$=M9O1u{ab?Ap+)(fp>ob z#;z9&xcV>*RxSWez@u?4c+)&sr9CYAP4fhQoVT{-!L(A-EMAf+9mez@Jv-1Iju|`G zvTEnvJP~Uodh1>rhMtcZMvQOP!TkbcoYaQaIy4Xig$}wZ-y1?#&t4lGmn{2fm53t+l z*=qB=u3#Ni+KK1*-YYnB)^)0IY@rdc5#lo-UqQ& zfthI)jP11LQTrVp6HGof%tE_3%<(X!_b@C#gZ)TSu*<07s9ueSuQ1Z3cE(bG9kqCK z42_g|-m%w4^I$2ls@6vHT=27bV4Pu-lIrW`;W!KU#vyI1&13q9iOD(k4#z(I5VTHd zV_l(vtF&qH!1fZ_oZ2j%TLjD#J8ty%g`+E@{_OhZbM-q+&O+N8Y~%5R(C*dW;Z5~h zo?V)^mS29QOKB44wR^Z=m~<6eMFnGW#{^XrjGeOQ7#DEGd!UaBnB5Hm62|O>^(9NV zU;)P3B4GS!uz^-^ZeCpS*{GGmTNwe@itU?M-#uFIf;X*)xd8^}ZgsxRZ9Fl%iAPh- z7#;z}Q>qKx>pvFE@2tVSb~}l}4p+dKm~+C?vxj*{UwA3Ae>OJ95uYQq(Xb{~^=y|- z;pRiZJnAh`eRp5HciPk9-QivH6y5~HH<||mL(D=IGhOSb5L_UcohB z@-0rl4h;a)*4*L4E2h;y*XB@_cEUC)7WL*XxBZyZ2IP1*zK5p@KH*ITKine&wgI$` zcyU{~2|4HglIa6_ieJCu?RoR|_&xHy`PJ9&Ym;A(rHhI)rg=Z^1e!%Fr_!>Xo@il61)tlq%3%Py-P_bzJ{jxN$&>Q^M zt%Gg^e(7mQo5Q;Z|AtWpjqEOg(>HAW`CWi@(pHK29Zt_To~1-=^{*l>Cr9i_czPxNq%`^6q~s2$5g$>}LCL`^N1X!^&9n$MC6 zG1K#-XqjYqBtp|*h_)`U6aM8T-TJ`$Cgic@2!*$?r&PlZv@|sOGNB*N-_PE)HpW+L zyV4*_aq?1z0apzjG0?;O(Rv&4?$)>g*~|WxM=Wo|$=0O#qzb>&z3f;Gzu!wAFLZpp zH3f?>uklA&ZOQ)AG1?!n`8t)zOQLDT-4)Xx0E?`&oBrhiC(Mn)aq~IDz1-}xp)>4W z8%saF4zrAaJ>M!wm?sC=>4|5vP6K`3g*FxeljW<8ZZ&G;(W5YrahLqGW*jD#dewo& z%xHNc-Nh|BNxEPd1*qe&!100u3=X;+3T-S{yd75B*ke|?49)0#6x!HGm%{~Xt35T(32&Mw!NjRv zzth9@xW~Tzj#HPDu zW%XF93k(i5-*Ct8pVAepbLb{7B+#b=ew;)s8m@LY@OlyRs(?{>XgCRTxRj(|y6R!t z&I+~>Rh^|a?4`n>C;?}WE)s)+v4O&%P_Rd}q+7L|U4Cu??7{+O>lc$ot69j;szzyJuYm?q&vwTyJ}VfVFC+~!z%Qxbn>{a^5={^{F+VewW6 z$F9iNS-kSJqt_r*ZIm!9b~LFGFuG_)2k9PFR@jX} zUJXx#1dQ2MI%N;VlkEGf@>V)}3hICG&dceo5Q zfquZ&D{UHpF&hCpMru~4UXA1tskwOU;lN0VweT{`1V%Df^=jzOSfAY?#0t=S8R29rQFD9qp zk}Gz{QoAPZjq?JJ3XUmMAB8r)Dxrabf*GWiyb-Wxw~e%|1S~w9<}1FZhtqbAqc3-z z9EDn~gkj^A7G5V{AB$s@!X56dmukj;s?z3lSjt|)wH9NQwxfRyEJ6j-I)YiIU%9pjEB$#Kkwir41algVfx5PY0<@>(zEKF*yQZQMy*Z(5P6@iJgK& zg&|xdjNK8hpl3&*6M| zD`4f^G}rvw&P^z(W>_Z}-CY{%Pq6i>AyXXBdltA{Fy>}&n|I7sn=!bBeuaBD1(R<6 zMfbupOlMf{O1o5khJtxvA33w{3wK=57&#=gV+-9X3eL&VEmsuIy?+RgXV*vLEv`?u z#(TIvJr?ygFko2HL+%o1;Ha~`c><$N+yeLR4=gZ7T4-m-!x4GzqRnc1ZS1>@qr2-~8+Lv>T-|9$?Kt()?PNE$EIz^U(rgk( zht9qA0^P==f=T3%u{{)U&RnysfEmAu0hSiHjQWp#;H7_%W@8mloX zZBKv7lGK|&-Na1y1AFCtb@_q4C3E_L)eI}-uMU5F@o%1<8P>e&g@foy%@b`v!gF z)YppRHtv-lcx}7^=;;`BUD}}cjM>~^QjAWZ^ek~%>6V0v#tYPOp+PTIXyIGiJL<+% zfNm0%Zo**3LM_lje~Dleih;%cwMDUOCILVZ=%ATA(B~XoO(JW_8!MIb<%rm5t;vA1 zx}dR-FIfBdx6nm%74Eb4x)CNJY&D^a9fmJC?opURl_X#Lk{yZoJjT~v7n5vYjOkuC zU~3(y`p%nLlG zHO4*G74BOwW612}gf^_miV1#&yLKcqtW~e(3NIeg3Xl1T^o)+B9(<*Ijyjwt-(B^Ss%4^}NHxJjx zs0t^u5iAe&YA#_8gWaOEvE%oq8l`=Cs_nI>`aj`K{f9^@f|sYgi8q?C%uE^LC_AP; zJV-|8t%S*hL&_Qfr^2_c3Z`dG+YfDFOqrN-%L2#i%^fOZlz-R4mD2qJjjO6m*VDSiG7>zF?C?(w@Xyn?Qe-y``iU?Q%+CvMGX6)eBgd6#5P z%kMORc}X;W|Ij{aeDL*Eu;ozs&AV`iAJu^^+o+G?>5@Gys3(0(#VC`)JN}lP;PrcF zaOuET9r7H_Y0~*{0ORHRQzKacbG=j_64&Rs@glVbO!c$Zb!?#FrwKiPaXD+mLcN;J{-XKuKqeq*gzZLy^y%ReAqsYE*G%C zU)aVljM390sbhyY`d~V)Xb98$5KDns@Yrz-p6Kj~4}F+-BrjFCv-tmxKF|B|$>N_( zV-DWy!%(OPb?{yvqqtNC%?N!`&$f6Iffrbb+~TP6D^IAstiR!_d*No&RAfGNb1saB z$<*r71Q%NX$|cVYlPev!FkA|WM+F{2PW6H3(UvhK9wrL?=73JJ4Ta<3k)Emw=d7F> zh4J?J4r>P~rG7SK<0?|WW*fN93jL|BPJCBaKEaIf;mv+&vcWK$ zI(m9Q9(D{bv)L#!BEMr z>?~3rZO!9gso&@0z5Wz5dg8mbq_1D_uL7&iwT*GqZpbs<%un+%U6|{NPj(81W1}h+ z`Z=PzWvS1bC1%G``t(tBx9?f>v55(EUsL)ikle*c{mS^nu;QEf{KB_&O``a;38224 zgcSp{F-KqGrqM_AVF8QQv0DoKxbw3T4*JP7KwQ!O-uoDJtV@X#Sq^9q>M6Lz?jwK$F>K7_0!cGtHHy z1CJ^7dMA?gm0HrFx{v)Jv(G?}m zs3KFfK5v=mbt7=c2<3~Fc;LR{*m4w-;VFICW!TMHiD#y%DQo!y$A*n8{(HR6(WobG zHqF6c%;Z!$`*(8f5t-O(5Pf;oGL-7lKKUmjTxzgKBEdrCZhB)!x@vJd_FU+Fic45XAEl|YbyO(jZNef z-sw-{rsKP|LXVBry`r-?+QN{eev-%ZZQZD=NUCg7{|cOR;JgSCI3AfZ4<+vS_*Uls zb&OyW`k`e|GZN1*rkK}B;GRiwILAu-s>=)C)g=$*{p}P~%s~NmbeZIN&t#|dfb6Pn z!KbAe&rgh|6#ALbfG^4~OpNQIDxX}YrE%o$^_}N+Op6EK;|bf7=kt5{ywt=8iua%U z?S=2^+A}F-eQRkZlgBZJx_o3Vg)xWZ=KU@4=p9ehCC>DD{)IlTxmrl$4IlHZZE5YY z(r4r*I`*nR&F2g$uJZd}Cefp=NW5Tk?Q>H26#sqV+qU2tjC*_SwJ?0$EFS}w^U?1O zqxZ^!kA5352k_uj=@-t3F)4lKf-!+1ZhL)4R>1hspX?kmM;rNmj^_keP^5lMK5_Fa z^aqXjPJbR37rtu?hIpp<`Y`dB&zbLUk|(wJWV6z1+i0AG#^Hs2ExIA%S5k?Sa=Em4-yJ@;#f9(M0#;8kCB10}p^%y< zd0RrvW4`xT8f}Zep7Ej2+&*-ZQTiBFh4+U_pJ897CHURyJ5F-EP*6BCYB+}O?#t(? zRAwS7rC-{(GfJO3L73b{=}!UZC%$Wogf@s)uFdcJ+I*Z8T=E_8%v;DsZv~ja)|U;C zdAq?Ov;wsSg82tPitrH9vnWcZP~sC{vPQZlKLFAMdb=sA`pBc<0X%y2Ra4yFr}Ij7 zgP(P5CpuE>2k8}J5qhq-=u@)lgpM5q5~vi`k5Bg?TZWIka@aUBK*6yu=wtLI=+ox3)i?w++G0 zaj}bjCf8Wh;0*k5as9s0RDp@noqRvXgxcN*i8Hb>v{Yex zyzrXT2>ln)x3{K#JN))&OISZG4!FxREOxX7Qz#15v{qFpGRAfv3QPkUGyW(7;7b-v1euWI#qt9pS^xR8BBX`i$^r=Zi<4vcD~9b zj=3_9ZcVR7I|sxP52GoW$cN;AN@@~ zi5FXajk^4bNg^4qaPG5;nd53_{1*3o53GG1aKVQf@ojIuAWh} zZwp=N6iDIr#b5oAP9d}iO6;INJCN477tdJ&X(!p&fwZp#*E9)#w=k_Yj*Rn;a3gWc zsz8DNuhS~e=E4ZXocqq1q zc_@EGL2jST+;5FhUuY*o54c&N*H?$lC%mK-J6kk3XT~YLxwYNUyU*T zJZV?j94nRq&0APSxz6>!33J^wK*gS^g+6p~ObX{2bTjh{8`w!4=4%R!!@S{>J%XNt zZY=c~?*N-Z;jqL4ca;*S-!~mI6^{KVZ`jrQxx~c7FZ2tEl0#Ow441t%#T)Um@5h!3 z9d5+5J`B)a5Y0Ro80o<;(N)ivm?ChVA*X8yC#>YB_~J@r8N?Y$>t?2S(oWIba4Z}! zsguO%Pfv$%(mc3XwFcx5ce5-%`8y~LS1kPa+&{2E<6ooAnlMe38%y)c)Nz!R-} z_X0-)Ve*xDWh<`lcj5URw)Cly8+Y97n!7Th(ZAd}CbTYjG$-+?l`|*LErb?|VGofQ z-R&V5V%6*+yc^Gvrnj!~B+Y1eVr-*N3+_6O9Tm4NN}u5_N6fpxF?L7@E%D4gub)q5 zpu!9%Tm3m8Y<&8&#eBvtG`?Ojj}Yp113csnM#I!Nyp)U@523}AEVvz`uVU%3UgjDc@%OBh2y(eA8=vReaC`ID*2lmNGoVS{1AnO*dC8JwL zh4X9_Yosinhnv{A_yv!nU-6in0oi+f9y{BdZ~DB4c-HlWZ|k~}yZ7}5uPsLO11&?I zW5Q4Uj`x#oXz%gVmYyteUXZ3F^+~ku^9$T!vI=G`fAm}5PK&J6M@zV)FYR%LS%o0q z9|PX|M!B)WZ^6nZzH5ujBM$qD*739qF-W=2Uh>S>R7PDoCe7x2DezFRB`aDV4N1aP zi5K1*@>};feKs5!%N5Q`$40y(a9CZ9{Yv1TX;s>8O5nY&FMLu{GRn|vQ*j0dqt?DrlI3|OJfBk)XW?c4j@ai$k$l9D@~Cp&t0Q0Jn`;|8X0y4vd@3j7&rz4mm_wWDhEMZ3r&I27g+5F| z(!||yJI&{zU<@0j&%hgJ;`;o7GgOn8SqhH{MxS5HAL~K&q`oXle~ODg@l9RR$)9Ok z-n1il1;Mb;Az$*r#d6Fc)zdFz!SiSf-eoZvn9zqAVz~Pf`mQa#RqEqkftgjLK8IaP zX(jY?n?ly_8~V)I61~(P9`_f%t!s=92)*)dI_z7X#=9=x0cN+z3`Sdl#CJ>e2^5Cd z+V}vRCHYI8fOX;NFH3jFR8LQwjllJtQW5O^xn<|`1qcRgv3Y?A` zq!Cm&(>S*Hu>JcpA&Mn!xYB2eI@1_0wm5c4)weX0JA4lMxp1@T4(MtOi+?%AG{<8@ z7sesqGHv96W429=g4*NqslZLG0Ow3$3 zUEc6f*YvqL5^C@DVLpeJ0aNH#x(V8-^vP1lD{P53m!Ftb`Izo`d%8Y9J?rwqcXdg- z6|?V4^Sm&ZifJL1mpExEO`WSUVfmFftj&^(){lXgyGG+&xwF>KIkpSw8*cj)?Xcdp zTXmsNKRx#khiQPuvzD)vA;;H%jSBZ1fF!n*=g@=T3eZSG|4eeJipYO=6%H4s&nP$Ryjq`+q zd|3jY+Tz4_Z4o01@jL5bcr}(rv_i)3Sw5W1kmqv1=mfLiZW=e)r$&ge*N43uLd$Nx z*Ds_+F>CpL)OEsS{J^_DW5*aJD)rm%FZ2WHW*Z^LUOz_|HjU6@ua9jS&moomL|Ad+ zyS7TGLYM?^jTPR>i5krpiOTd*2LT+Lhrlb1<3M zO?juZ&HTgFt1%uD*Q16P8A|8f%S*>wXX#u-i)oh6Fk*biJsF3Yg7t>Gj%T_rFcM4X zSJ+F;l_GF=@KOa;KJP>@@yqvfJoX_~xWY@Mqxh=d%WoYwY5gfm`oztyt}&lx`*LPy zT{JqFR+pE2V#Hv_dHoY=mNvj?Hlj%vHC?c|M2cl==*b@r5xf3NJ02ti)Lz zEmh|p?;GST?&i8a@m*cNk)8ai3r0IKE&Y&(?H}yauN~dCB+lHyWB^e(k4joy2^=+* z=s}`zOw){zQaBwXT#JAdI8&!{C#3MgsliG8DI)!zh5T06&ot!QIRx#>c+N?l&OK@L zd-{Gcp74g}so$5xyEvuKXf_5~DE-RQW#^T?BU??5Yx#N9W#ZY6)<F>&2I4(F)#W`6 z`K>OWdB}Hj1RdTPm)6A@!0m<^fi9WbbS-dZ;5`DuXMCEDu_fVoxX>rBtLI^Y!u=Tw zrEq=>=6m&g$7uIkLh(iaVz1odbGKbGj^C>KnR5JbM%L<*DfVd6T=F!2&9wA6*vnk{ z1Rj}bAmjxfZNUTzWlsIQ=vU13j9U{pd5;a5nH3(e_O>A|aK=txeN^w~N~TA}`u=0- z>zRiIKElH9sm*U~@yu;5rfclg=PcgLXl=*RW?~BzUhuKBG22D!mqH)2Jvq!Jj<#yd z&#L^w6vIyHV~WaHu;lyW^C{iD$b#XMG_xj9n z8jf$>>cb3SoU@hs_}Jv)`hG({mt10%`cqxr)05xo^6mWOXI;|3yyXz5YuczwW|dBH z!G}qfOksqA)W`U@`9?)>)5qGE7=fVl8x^sAyx%a%I?>o(UsD;(L2pkggZ&nou3&S{ zZH8CGVUm%gn)!Vcj@b&`GB5bFb{WS6fKtCQ;kc;^XSzoi*lYQd$<}Tri+cVDF5T;E zs)M;M-%k8}t}PKiPqFkoyGmo7=LM`OD?ZvH2HKZV>L=$(h$!_lsiJ~Y`i(@pmaO#2 zI8LfFsn2}rHm~^5ugv2c%U*w)FCSb3b6tN1*TAur@I0!T@>0{!ZrUPafbov?j!*L? zXBktZe!>PiKJYQ$!3<$~Dy2_Cq?YYM;W4!vBw0T8F^yzM=xeTkTU|c50`~JIqxH+2 zJUj7ZY1-m4@qCha!5oqO3p~SQBS*&`Z;6Uhkk7|D59>R*1rMVx1BNs?Fob?#bdA+` z<#eCq^F2vCv;KZf2JkWnc|V7ECP>J)Jlh#fHu^0Sa2hLd`nmagzUmow*eGC=y5QbS zb3_Vs>r?sx=C!X*;>o4LM1%@2%wrSe_q_`Ce;HqY1^d4#bOrm9Smleqh9lTNwwQ5@ zqR$TYhwNtu`%kj3gZ*C#KC@&A#`?-eRj=yg;l$>=_5PLN9 zVU;ON>kt%-xiB)5ihv9Gyi5{s3(7Qebp8UDVtAH*gQs&YGBeK6`FHJD$f2n|484;i z`0C9&!=!*!`2AG0ANED{xA_0NJ{jX$VoIT33nuomzF&T9Gam8xb6Y&)@5N0V zDkIxTzAzi;FpV)u@wo1ePumRaojIi{eN35w$0ACf8JVoscNpySxsf=p>S9>&vCZHu zd|+P@`hnM5K1luRrcUTTX$p32p)+4ETRxbIZ1*mYnYv6@8j*pK0>WTT1Tn7ku)9!H3*P1{Qrx#FpI83dbrP>K{6Qu;K_5<`*{ zo?xCgqMS!24^yG=||)U48&LWgE&9AfFs&*(boWC7yGvfHORFlhMzwB{wG@fn$lyupZ_2lLOPYyubVBV^xW%<9vG~R0#mD!B(NxSIY2bz>PHOfmLXH%7}T^mHI6YG9`82|yB60V^k-&)3*WXSExOw!-qT?) z9T%#$ed{I9IN3UlJ8UCf;31OUz}@ka?XR^pXN>kOd;OMwk{KTNIK~|_pg4)!Mloh3 zPQGtm$SR!aZ(ID){{4YDfApojKIT1aVr2bvrw)NnZF%Cmwxn%d+|EH}oW?dTDQq-M zndAeLIgPd~u{i|Z@i7M`F7_=#d9M${n+_>TAGQgW%dp~O4kLA6IHGR1c;ca1T;G3` z&pdxszaJwNTfCCehh@f-bEQ8=-5&U^EwDYYIlc|=MY;qsZaLoK#nzqXL>ueH1*r}gJqTJW~cO-k*qRy zOW{*g?Sb#wB6*WAF}~Rr%pQJ3y`J*byX&OlSkDT%kQL5c9IY;I_!u`K^RClL{phJ* zB%Yauv!$8e;}ynFIiiAh&u>)E*itHeh(`P_%crYWW@;~mC%PI~`TZR9-UV5|m;-CO zrW5!a)qCK(w$7&dw()qe<8Az+WbJTWz5|{)wAqL&z=WA(@_GO%F^g+_0;Mp{r91&f z>K0CL3qW=&!|iql9!vT4d2C8_#zS)>aMjEl@64+<@I9SC@^xZEu;J?Pyg?0F=Dj2J5rI{@i^+*V7(@-gU}~4J=5wc zoO!_+F0OEnSuFVK`OY(Xo-8_heG)qck`*ePOMNpOMfnV8HCDd=Xp0NqwME7DJh<21 zum?L_}M%uXnA47|hxR)sT`jhkzQ!z?=@ znD+0_2&j~G{m>-=%T!VL@YuibU0Xg02A+mjOUv70PKUh3K=pQNE2eli3qI)nEnf6+?xVs<1!3s0pm0r3 zFehn$&=YKDAZCKjEeZN5Z?P#&V+LtEk(pj#!BaALUY2-4w~SHhw-b2sUMd_GO*?8- zcp@2l^%8Hn|Em1H7QJO#lJ+f5+H*`|viukH1#^=2&!8`89HkX|tuV{O@ENl`&AVL9 zf=|1P>H;}Pm43#!DRwP?YO82le3#O%+`PrC^kEJ&$kHi&hi(sxM!vsG%qC=_)GwA< z$CAUY1NXJIBlJ5yEhm|?T#)+3dds6grH@s( zawjMBv7xS*{j<`iV<)N9q&|7rN%61rQw#gj`q|Lg#7ccq0W&^M=)a&>nA++|uW+>0 zxCL&DQLJVNU%#UPBWI5%;CU4`(GeW)G^a$ro(uac(;eVY-AJ78?Cods6!0*@o2U44 z7~xIx^Jv-WMyNha(knuwF^}2WR{R?tI*zFZcJPW1{X~<2!&TrdJSh}~Gd$kisS<9_ zZwIW#2dPhYgA$^|lOspAd_V5^Qlq8VKi@M0QmNwoUr`;*&8evl`gGCSDjKp5P4dk9 zIO_8BFIaHbab_iB#t?-wSj{p_d0)OGRZ2E%`2%MX-Nxv&FP|O`i8Q(j$EFZXZB_Z2 zs$j0mCso0=E^WJHnWzHLQ;Hw`nqN|LlsNM%(H~Xe*)!f#>N~^JiWfLZ8xZd%XO4AlTXh6?Qu*H+|~t&(|By=rNB8T(+hp(*=(!J{{3lQ@*9-CH-)^2 z^7}NE!rWF*Duu@exs4kbfDHd1@|GDk#<;*7=eYwGI6YWGjtX}zWjyCFfiq{id7&S2 zqW_!3i_4|ewZNIQk0J3}{1w&0RF|JawQ$VmB#WNpnU%24^SOswSnzoc%1opu^|@;y zJC?#316^H~RalQDVsOl0_P`Z9=?n6Nm1Wuh?G9Q&$KXYfoEfm*j!P54JkUi z;?K4DLG>`V<&)}R-6r*Xcp^+^kKDFnO_`MfoZ|_SCKhh1Run)*ADdi zQ8+o{yonO$X(p{8g;yTYCHZ_um+#`U#C>zwm*r!F>oYo}#528Ze3f{?{M%Ym;FY01 z`ujAI#H~3WL=w-{f^9|O;cSOIQwyH)v8^pUoj;w%OJX8QiI>12uc&Z-K_!Fy9S@@| zupILGP3hB}(OHd?Gr+viuZ+K#i8N;1&vm^JMZ63--`BOt%_DEfGwJ*pP~F-hF>O(h zxW`;fUz9tZIv#itnY`3bbbB^Y;)S7!rbrw{5G={{`FXU}LC!02EQN(!kK+BY?qhHA zz=u9ov&f9V0)ItB@sj)DBBFRx=pv%X#`!P)8V@3h)EEdt{d^*dP+vS}A)=UMUlUQh z5)2M=T8nJU@gE|*p=#Jj4W@?ohk#|06ikmZ6$HHtmY?4R2HlfUWqy^D!-B_?5nJ3l z{X}C#b`{7krm8%D$b7r=C;P#sNljYm=$)@LJD)tdZF!@#sKS&f*E>CgG#^!TRvWj3ivuX z+{2PxVrrfzyTsEjY_l?cb(1&?E@M)4-e6|D!=rJTtOnZ|r43^%)}#t=4hwi!1vB&y z8*lM!l6w{2CGNE)y~JEaZ_`V(Dyo$nF+-f55Tlz!JO{?8f_dCe?!Fs5S!*z3%S<3~ z(I2cO7O8pvKB#*PucaGKUW%(qUD=lC5zI#c z^qJg~yC0#i86xJkcrrv>cGx&sWOrr&o}C#M7+*N*iXo^xxx3?|t}~CsnYVebPqq!1 zm09UKG9_8NmOu0}Kk)H>Q(ZDHqey*knAtfC{mG_%Fg(n4`56ok$6k+@Y!gF)gOTi} z)h%#scMCr1GII5bD?Y7I6?Msey~mqN7z6esUb5r-ES~SU7fnV!pU&rrr^E^;`(jE# z;>E*)DQo?Vetlg$3w_N1acipw1H{qq`vuw2Qsf~vU3vge;T>TI9{uDh-*VfFdE!Cs z)m6`Tn*vNp^yh9TZM^7f2NPHrqyX_i4!^hx_}s`|zxRO84t&)iPwoZ=L$5lS#vqw_ zF5trfOkwla837%66r##@N8S|G4=eB8-1rg z=SIJ9vuUd4<-TK+n2hU~ zem;!rmJC=t-@|B))yd~i)C(uRZL3vn|Sz3#iNc#``kbf(S=5q#KIwW4GsN!oCqj}F-_^BcQuX}y+H82O z;wO2AG)^|DXDp6c@M#X=zR#@q(5Jx|TcY_rUN{Son_-XhW*f_2RnO<4A56{_pKVsd zn<&xTv6kjio>2X^UIY@?#cck_2IE*6n*|6ZY<0;XjLF%_G0G27M1@7^C zaB7ft~T7~hwV>CYcT5_|orF;3iUn!_{bJilICTAXWX$tZ`s z@xhI{bX+Pq2m}tBF8UND9vFtoG|2)_3>ReVr@*m4XoseEd}_;_nUg{3yTByPSw0_| z18hOO{C;M1Xi*IU_e^ZXgS;(1XD`0+U0a2~sFar!!>z3h6ZHC79!s+uZ58nplF8ig z(bjmeaF9;y^)c#lBU=$TVA$YQmS0IKS=Z;g(N+oHljQSxvSO2de>eK0>1{hh0i|Dfoaoo@ch7Nk z;k&j-hW6U)1MJeAGAv#EhCJr)I>sHhQ=T!;0*|Dmpdlb|v_+wVio!{+PG={9JLaO# zjdWthbH`yxpa5CE3yEf-l{o33@d$~-zQ=x0mOqhJocOjaU~6G}{N@~&Ft|#%$>ZHd zTLd0YC5hujtnqQdr?$dBd7z{8Np9NWzxTL1ID)IhN$TnJ`;po#F(I*dKNJtkg6qj% zAL~sGQQ`BrxbR(DWOV1^Ups~sSY`=RNFL&tbmry2wtSOS;@A-L4HkSd4FatH9HoAN zjY@V>Wja7HV(J}V3_Sh}Edul_3FD43`CVu6Pic;Oh#ITcC6Vc>!GF)dhuWB<-M;*OvB zf{62Qr?MCC^|_;AD44`yDulMW2|O?xLDJkDlx-A7Chsw(=M#dBwwMD+UJhNI~f5+K5fQ z*#Q}}l)h`Jbs8hcUZ1hHOtzr(=`)=hqsJc4jWAMvzpL&1O6pH-b>f@0@@$0o+R>KqkcY}$!eAF z@0h^eF>qv$PmCKUzN>2+6I<-faY1()rlTM7A(k-*@y?TKH@uEHjDfGU(LC(+$)3Xe zcnVLU*p^>flwTR{Zlcn6_}TK_Tj4Du9AmWi<>U2ZqasuKgPdpYUzHN(2 ziqN-g57NJ6cDpW)UAik{SO(@zcM|t7uuY@v*yGJ9CP#^v(4y}pj$v1lljXzmsD;d; z3g@_FVl#y^sGVLp3Xik`IRy(m@rZ=+zXGoL<&!7|7tNjx*R zL1VYr<1k7S6L8=0)bUCpPa1N2{T3b8BD)113Iu3q3cO;T@f=!vd}5zCakFWTZ0KLN zSsaINT4;XF*)Vs&kgx3dqpo?#&KdcJyN+Ymn;D6s^y!5coy3_a9hQPu+ME98DH@de(Ryr-mXo8 z;VC{%g6|Iz+sG?8iJdYXprgM}8vt*`&wcfNZi1gc zt~`ehPoRdB+GKeFAC4-UI2X=JuuMV{-J!V=xT-so`@>hX!q@mi?g6V5VM?q< zUvQO3cE%P%wtaz1+=RrGY+am@|E^I>*VDbRiDwuoArJ9nJci9xVH|fQoG^StdS*z_fNWJPm{m<5+B_Mwb-KZ zFJROkg8<4y!!_6aVm2Dw_BYOm6ZoeGfG&*rx_^IR+-zBEyk<|oUuL2q6W+T@2ORE9 zP=75+Exx=z6q`Cv&(2GFu6FgoCRYhad`teY}t}|83IK z6Q%&;Co#jhtk6C0TtM5sbaFRh0>``}?u#!4e$-*3ETsF^U{p9>;0DmMF3B3ap5W{*G%}eZO6b!DtR_A`z2hXVHd?=}A6C8}w`OR( z_;|lB1%6enE5=3`u><&W08mPgs$z_M;f=0%m3~*Ga7jP$GGu+T$uEuSgZIaiJZZhk zXx5zQBeUS6M+TM#lT+zOX6Fb&;^Z-`an&E?b8kWGLg{1uqU*5IcP$4IX<7FAJaB35 zuL`FF5ECG)@~#4a2X zjP;=@x&9nl=G^%B8M8H=n3kV2qkFxbh$!A4pRf{9Tov&ks35sUVMib28cocT_}g#T zH3pHz+_Y~ISxnvSNo0XV*xJVgg10Qy4)M&$#}4!2ooC-SIP~RYf%|&pc#xYqlf#gw z^Jwf(8`BhhziU!&5xLHp$6It5RmdDgLK~GEOG-++kj*%`OQ{d6kDahT)mx=&&71W^OY9N75{o zs9@~1n*Dx*#|l!(1tAOPSsw2s6pW@fB&rqg;T2*9EZH{Z8ho&AJdZor@#!)#2r>Ha zf$q?QjpBInEF%GD{Fr}%Q-8{5TssExCy^Ef!> z&FZ*sxrdU(*#=CVByfhN1b5@PxZ|XKwWd7qF9qJFp$0H*LmmYmb#w!=ccn4?NwYaN zUf61F9ZVSg)dIQ9ysR433c6I5RpWBCE#ry8OQsLEQMjhin0tbz(CDMQH8aojZu01v z6CTlpQ}GM#I?l^Il1eN6OvfayKmzCc(!WCB=)8p)E!Fce6`+HY3_KJm7S?a=q$I(`F$lZ46_jbmfvnPgbtyo^R~DH3;y z*0;uC(sH+^-XC)?r{OB~F`%%ylJz$+zMS~3ts4mpAGW)BnmOn%jeURDMl~9zteng@p;@_ z_^vIIZA<}gjvLrbjbNwCW20Kf97GTQM)-BZ?P!aLuFZZa^vSZwMC}SkRn|s=wJ+Z> zK*==HmaRTrmFR*Z^_gJ9q$>5%l}jVn5O}5=ILRmW<r&`f?h$HKIFlt;re#pL=aEUN>iLarfi8YZzcBcLU2Km}1UM(Yt4oYs46nD>X41ox zVDXY~(amFRMI)NpNKIyZTAP`)on%5nKcvtu?G>IfFMYDaD{N3+1d8XA*DA-nzF(U9 zJ@!+L^kt7TS6`}8;*FZit=~7E&kIj_?r!zx_29yHZB@DK2^3jm=#&=5JnG#YX`xN?E%nE5wm42Y> zY+j!~@WfM2o~n!TndUt{@Xffo@J(Cs7SQG!dBx3+dViF4<^8(Euix8Yb!H6p3V1s1 zGQ4XA61pE-{Q+>F)lx(+fFmoaBY(gO@Bofm$_Ky?PmB;{vxzeHtryw&sXIai0M1)1o@~e!Krb%U zZGf5>bDIY6sFUlvNtT>0&5giSWz5V+E-(&eR5ONY`9BzIg}p zu>B_fy%HbJV}zOItdNJ{g!^L#5b2@pw$5WsFdlS}m*9C_*dSh)a{{{xzjQDvTZ-Tg zTpFd(Hk9Yr@O|+7FMySKuA&kmyK>zHNan?gC6h z@84l23hXb~jdC}~OkAmdYfWb?@hOcL>JVAjHq}6Cj95q=wN#uliR|8KqtW>8o)z~1 z*zXw(^)=7uR3d7KIYh(@T;jZ~ikyB<@zd)LvjWz# zULi*c=Fr8Da?%7eI-<~cNx4bA?mPnHHoqF)hip=)NezGcFK3{j4N43tc?3tR1OUdVSMCLYurIO~3I2G0%!um6% z``G78PfwUBW|-mpHLXc(?qNBRS9-{M9^M_dR2%&GP+s!;wwWKmFCKuyb8`@V;(7q{ zjxm2jFXwtQ-?;4E=2CzX^%TjC``$#a9>a_$t-y4I1GOu zNSLy(*#~~rEDU~f2TwrP2pJ3Bv#R(vV$!HEy1f*pS2**S5u z>yVYPO)vcd&hEpb`bnN)U$x_|@w7*YN9L{Ogd*@nZbYlgFL)j1(oi@Zb06<_W{YQC zGJF7LlG1nFzB2em;gNAb zKL8TN(|dabV2WZ#y8!~7UVME5nbrYU=@lq}_fqi*z;tI=!2{q?bc~I{XaUeC>g}x_ zm338!XN+DAhvr7$tjjbpbYRBDE?S=Za5YNiDZXr~Qp?y$woN-1>B0 z@z`xPuXDp+G5ij*qqZ_kQ|MC+P`V$k;iSO#V(%H|;qnop=nlPL2$fJvU8YN>` zpdKnuR|FpEQRAY-Nt0$9x62l%5gM4h^^Tj-tt}_06(9OAGVnR_{d?l^Ek0etcYIrw z=xsL1qnr2Vx0+g98^Wi22b#BJa8DpI!@uu&zBKAnsy5--fQ6RX54N(gMr8*WBh z`0DATEA-Dy;<9|szYGGCc)^~j>hdRIofF@+1$&#D%{*zy|7cNKUd!9|D<{7Zqiolpa6;{_PNFCGASg%7GzvBzwU36Vk;q^q3X%GqH$ zsmq(WUdyOOL-ua*<`4XO!KdQxB(3!m8yR;yO89DYA&1R><0HBrZn)<5XFPDvI1W>n zR(yyv5m(MIUhA=cKF%?CvK!KPFYNDpBX&BZ&jYn%nkn3*j8}et0^aga``M1@Kf&;> z{i%^lGTuMyZv}Y5hs}8UI+n_lQ7l*Zfjv66ys1nEAzq-1Gc!+4 zUEI@?oq4J1dB8~Nz|iRuyL2yR08D6_InTkOdH6iu$j4eI~{a^TQ@`PPW*1?y?>yfNE@Q!!LlUF2<$+bBaI*G$J zLKpB0K8%J;=ZKJ`KCN;WR{f4++s#Zc^8GkJwvC8*K9e)GixH(?m|D}z@+W$t6W`T! zVDsCTXGg8BO@;kcXZe&*=E7E&n1qd#~R!gqDqn8UI(R^MNBiQPE!A7Anv z2#vlVJb_f17{ok*!aSAk2{=5V`EfphVwkJ;33$itKpDW})347FcTCbrPf~b_ue++i17EVU`XR#>IrEMXk7U1%8c%q-CxeZ^GZ)~-thB`&^=z|l z7yL_sA8QkVN^YA8=o+95)rWN9B&wr+~h`>Q&L{4hBVmW2SbbhfsK7 zvTSU?1wN5Xow(VwJnyVwjJ%v*0(rp`qnm~}XI|S|1$(o~U=W4#beFEK3a^aP^HSf@ z-=5b>3g^6QNCmgYdA&_CxII1-)m-?ls)}Xk?dxSLoO#q}YhUu-G8W_NPY?X+fxO5F zVFtPeEcC+N^95Xw;>M(sw{m$@Zx$?{4Bb^Y)0n$zB#ueFnwS)h6*QM-{oQasnk`q_ zmr_6RekN+X;&-d{hvg^mLHBgx+h%3RxOvHpf7CTo6qQN7GN0V2%Unr|Epb@#C6Fy} zk26FORb3?>oIfb%1fG~D%xJte>My5otgy`9;Uzxm^2B#_S$XL1Umpk2pNvQL+$LZ0 z6q*>44&vD)SoCC=EKl%zf>>9DB?3qEFU-W4bsi5Kg{ zH+4zcAZ+nuM9E(c@y0YbiC>cjDPd`F_1~|VJf`MI-iv3rNEk!jg~rM$ai5OaOW}#U zTUFx~Ggcwz)D4egN?}NxH%cFi1XC}p`UB_jJTJ!u?&-c3Nxiberc~_Z;)45WO2HO|)FeV5x}FryLZ5dy%(|fTIi=9^OX{cKm_JUk5j+CD22BA6Q$6JZ`(qVR4o<`Z%Zda zBrYCxOfi<6G6u;r`Bnr7h>pYoc2?N`N%X5i?ML2QFtr~GnvLKRtd7N3Y^}?fwut) zXY!?5lEgC>6dPaQq~p#KC&@pSET?fzzx0yv=%QbGQ|O{!DhvtzYd+|gN;_FD`Sa4*_lncsNh(Gp{t32VQT@$MPz%>5As&d7G}NtxMPd zl@M=qMXgmlIwwMQh+MUKIO*z#ijnU*1lHQ~-O6hRP zqf6aXB(uSGJaAw(~=OIt`vS zRPK#kV5dJ#n-8v_xw@ZRLC^7<$V!3gs54g&iF0$uUE`Ir3!XYoBb7N*lz!VdyQ1_R z9eZ0u_+B5=AYRdUsn3MWyxmdyOqR`YD)hS_*j9h8>y-;=uIta>0%~=glH=xQaM?sU zUyiztw8_hYkGe)XkoQ{ZCz#801yy(^ADd6Ae8wokOp^MJdAaDZuJl^~-vb}|^qwK( zw!)LCH97r$7ssd2*IYoiwo+U`N4kdh*Bn!syKkZPX^m7Pjm#&IO^Qs3vjW%>lcC8y z0W^5wS>gi-|>-Fg6)&Ys!H-Sn02t* zI2emoAkhR5Z5H|OmHdduYcO_e^v1d1@th7|wGS;C@fnZT1ZxeRk<+K(Mc-LlrV(Z# z9)({zIg`&l44`XZmaQQ?UuOm0k;=J|x$LXybLGER@{1o#6Jh4rJQZn97A*A&mpm7) z61)8AH{%>S!>C8hm8no+fJd#^ z^}Y6vy1gbNr}D!)>a=reV~oP~VUnatnMdcq;>}bi9q)>Cg67H6O)*WLQ8$@Kh0bqF zhJD`depc@YG)2fBIeN!b))1gglWLCNi+>TmVLDf^6O$!C|DL>GCCFYH1fvJG|9#ZW(Z~D@x-* z#|zv5=3it29L=#xd9LQLokl^|tHJ!M%tySw+J%#uC0Qf!Oz)atB@XkzF#n{$(b{Ne z)|kNYoiX{Ss_ubbRfpb^T5hYg>L%c-I_WZ<8_6sd&5$28N58Dd9C_-^$=y$ZjA zv;;o!Qk}TjbU?o}24xnV$GD&YME zc}*88N%1SsYU6DBZ{=AbFhmyd@0IwmN0X&(Tha4ahaO3>3tr9W zxru;v+04BYdVc|2cgzG_8kIS!8Y9)BQ3KD~Cg2wWXsIlt$zP)v@-%v>q|X%pUWwmr z@g{;PFOlN<62ZRuI(*8A$*UN*7Be3<#sw+2uWIsFR5AL%uGFwgpvGondi zyOqn3oWJ{o&|;Bi`0r3}&Gf;CW8R!T9IF?(1yBexb%(@gcgBO?vYs`;$VkQ11xMRH zpSC+eIUW`>cRQD0tGKI1U|%JAcdp~pvBH}{w^r2vuvH5Ts3(UubE%Qi`fK)?FiPQF zO-fyOl+pq26H97zgk*D}2g5Y!w0vQ;C4@T!M|;xo8pdPxVR`!&2W49Z_Gzj*pFGU* ztE))k{qv;-() zA>q3?9m@&hLsPtW=p~6YZ>B!+Ca2UphAqV397?96=lTyDl>UfDyZE@news1K!D&!USZyR@snHIy4 z$3QG$j7x0cT6oGGkJGqhvP~oPBTd_)ankyi5+%+nHSXla^Lg4CcvT?u$zoNRGhX2g zb$8@ST<|Xieob+Xsim26tOLJz05DUFv9EUObh@@={2dk0-wYc<$BA8ic_jf>O6to- zFS+ntFTs>UCQr4RoMqJ-$X7kY8NYUNWwlO($*GWT^M=PU>o53NCn_0m%>aJ!08+wO z@uCv1asqj3^LWAj}gJyy;0llpoQ7@6;-ekL1(uMhl7f%h+e zD5~YRFjQlDgQ+?&J)NAAOW_0foN8q)+KuU{v7ppPeLsOdPEnmD1XZ8TX9gU} z`gBYZ$B-DIk0k@moQl#Pqv67Lqk%J{Z_$n0_3JN(c;&vI%gZU=4X6G)cO=Ya_-f#{ zG}3_#nO8AmG`W_PXnGyq2T#kNVfHMEV`&VTJ?Msyu31RR2wPj|V-EmZq!x+8R%+MN z3MVl>178%5w}Z{QmOq+0N9H9@N}nF0Fa`hL>b_mqw%y1sKVRVnPOvth?#uV%r0v9+ z6Gy@gWJ5SIcB>^wSAYRSU*ivO;M8znICkK)f59K&8a4TvWYygJ07`rXNq4VN#mP5| zWO0<5|Jl?Xmzo+5dAX`)^xo7>{Ag-2$-IG+>gSreCo`Jb^O41pomz9AT>%`bp%fL5 zSYj?_z#INm!N){!C~C7zN|*s=g)Os84l%&(?MQqAkF_&qD}?EcW~S3;85(nj$+A1} zRRc!X#r>@DT77{zBIK;rCoH?bntr9K!fRPY zA3^P?Gw$gxZJBUx7*u^e>ohu^aMfY=`kCn$L?{eu`Bx^!3zym|Wdlwr%?j_+3`n

2nq` zK=Xg$9oi^AWqaA})A|U88WqpjuKJ?lh%gnCs*iW55iYkHPRfOk{uDeGGGuDn@Y#3Z zB*eu3iauE@`PKj%UYW2`E#JyZdErvu!fC##tL=VxrgK}6VT4CxQywO%K4m=Ik^R6!^z8Ai;ds5y4lW8_5mue%It6!VHaLUaaW`->9j-_M zihiVat%!f1;Iu)48;y!rFlrUG{0li@!;RD&1?0==aS&$QF9t-ko$@rT=k{6;INTfp zj!_gGmt^o~x#M}@*)VCJs!#J-gu{b|Q%8hPj)sG%J$tu*f8rhiIk1>2cmj>R-@l({ zTV)*isr56$0*QE8+p6J0ThU1OxP^Z_p3H1G(PHVQJPpm7;%qD0+`*w&!>I$X%c6$! z+PCIs!x7mC0csSSmL6lURn~C)iI9I94my0awT6dCL&sJXPaa_a)ci9C8hjZvyrO`h z!jW-r5gsO}C=V=+&)IrcQiv6+9IlWA~URnU4N#JgY2Z2f90XPaH*~xZa0d0Y%=Pa zY8pqeQ{LiD#lT&FZ&BHBJI5XF_uzG^=!4%SV0?@#>z z`d1TF{S1FdujbDo)(7oQ)$}WwDR@z(=r6Q)4Hw&rU$uu1+bZH3c#%hVXjhiDu)#dw zA%O40Zg`#Jf=Y|m^NK$8d$NB(g{0t!|3k)yic>!^R3h#BE+xDHD4PD*sB8GF>xN5p z?Lk-{p0C5u?|E%ci#(z^gt?w1ey*b88Rslf$I1MUTvs=ISuXqT-0g zo0tMn#tYuF8x>zD1RE~ZC9ZF2U3q$?$n!OI+X|}ECO-gX+y&ES2X@P0e1Y}~#SHf> zL89fZOjk9ybCzI@w#{dwyq@B_QC@MlOUqHcC5Zq?0}s#vQ;vd{9Pm(X!)N*xZ`{Cy zBkMa_Orm81I~n&(#j~e>1v!!M>&yXu(3spXJ9psg01yp2PoRH_jDN6~YejJhR}EgR z3K}z&ZCV9iX!06vgqDTNM+xrnu&v_EKH@%Zl^FgLF|)2{ekcjNRtoN8%}jB7!^dbj@X>6( z!sXXaU}#h_bHI?+fzg93-kVr8E6E@tgkBVczV%ElDC2ln9*Wm+hxeR0sozJGa>Q&p zs$$?3LEHAKn)2G@6}e)!&RmU)JQ`|_ogE*|M*9hxfaiyX zhBa`s^Ai|7$ip!x9-rzsng6&<+3=ZFk3({>&?)*6HzMHwRdARVwdnd4QLB@x51ZLn ztVaqC^3HVR&(G1EeKnw+R`l__CpoX-3z1{PrDg}=IjyYPX#YM&J6T#7?M;3FlttXR zo+5wuMUrdBet z>ioUQ)1QVHuU!GuC7Jrr1b(dm-x9m$f@lNI>?6OgPs&@L$-rxLJ>c!g@IlX0o@``3 z|K<#ML4Zt9+Njz+!Ph6{X*kp7>?*h*{-f!9)zbM}ec%Vhf2WDxUHe(2I6i!tDZ+M) zQOiIVr>O=$8biFjmSi&O*07%M*gP!lA)eqveR-)c&Zd4E_{i1-U`JIqUg05_LFljW zdal3|T0wY)IBp)~2-ydAonE}kSkZ)a^;G8j2R zcB?G}4CPw`JnEUX0jC#NhWO|{;L*ro0ft5?crkNoP>o>9J~im;SLBWk{Q3Y&#I^P) ze*p_s*=syG-hy!qZ3K*>egbz?9|Dg0;7wP`_-F`NBJ+@5s!09pQSJTJ!>#Jij@`ZF zFR@DhU*@p;ssRr=Z|CT9IETZ^-bNq3Zu^oY2!1|=VYf- zc(9v#e`-YV2RcDxR6z%hYU_YdZ4>%=%#AiAK01-Lj8wk%Uc+Ejo#ykXB!3tJcL8Pi5n*POnMY*mZk;l;#|I@o3k84g^vi&TB|g-ha9&K z%&*uIq6i%t92o&mZuYVrz(Y9n9}xeYCVm)B4rW4F%&MYC8t#`kUm?1G<9;hcP03S%w++iEQn z7^5ZPk)As=5H*tQD0gajJokpxyKBrUXuw%*4UnpBK*I)rx1D3I>)VP@mSuOWF<=6S z)V2E>BbxxA%dAW;eTmO>29RPh2+O0G00j;yV8v~M%bZ#)uAS?d_zu8M@dzF*+XkN$ z?=@)iMJhHvyO{tSW|mSoOaK=uNSo`gb`!u+f|l*V%>+1rgUJg)X?+=M_9ql*8|3}i zg@3Hj9*%!kgRb3uvbqPLhy>NIFKdFH*KSyHD#V{uxoy{SWd zrZWJHf?A(w&>)`^I4FgLc0lykhalMo-f!k2Gla?{e@RBh#R9(iu-@7s-VNjq!@jlNoqd^aiou{HD0jpxtGT3SDyRO-VFc z+E4Wk*ol-{T6@P@@;PjAHDt>J4I0D~M_F@Ie5FCV3xLe0dXy`a4^}SW#>sGp z+J|%+v`2B-K842?%?m?(&JGCs4r=}m3=J&zHVGP~MD7r~MhS>|XD9GF0Qd$w?FGPc zRyP}QulBX~OrfV!B@b_PoYwCatpQTC4d~}?ip|o{2+K5Kjbh(ztM?&} zi#|8SEkeZ)0}6rmJR5@-JU=sl6!3UTGbbH<0(=TXa9P%9twJnHA@L3Ph7+C=gKSQI zR(!0cWG$w;d=}lf)yJ&cwLVHaYHj%&EFdEqfyx>3dFi*=icj$;dN7O+g<3ESYN(LE z{Iy)cFxYG*u}=rXfb3_3VXU%`!7v^L5uAtlpKUb$2c_RHXaqxw=C{;Z=n8)1NXz0qq6IhtXzdI8&jAOPDIPx;TFvtzO^bDf>&Fa>@%<{o9u}il z#1Ssz4E1q|k+py;rZd*Z2&-{x+K<9&EZyx4t8sAnmvl&P4s&=1fY3e&pxi}pFO(U^MGkQQ=i!2GT@vt0>~-a2p^UZQA~kD08Mz( z;0Ry#7?f{Q^?-z0(^g|+tW~7O#<*1xZMb4dZpO5rk?tlOnWZFYa7LWQs%g_KQsEzb zhuy3qQ(UN8;$$ z_LuReNFL=el7~FvJ$yXPB9G{3b4=3`?7jCYjt7-w?x;9fo0+#sG7c{U1P@nnzNZcQ z_m^3N=Dc9Ds-IE_R?i=`RLRxr`KuL=>6G$6MfxZ|7U=_ZWkM?OTbT0HPji}6PeG*S zpyISYrovVo$4y6y8qT*hsU{Tm!tdaaP4~sGW>jK94P(E6Vq8VJfyr9py1n z$JOuob?*0G(_}>jjtR2F(BR=fn*bZ#2?WYGd>e1UHHs8m1FxrGKK2-CT6B#vUp&}I z(?#@)=Q)`gcz#4#p{ zNVIa)m2JGx7vkgVuxh?hHDr(IJ6+tnSi*pr3ac`s_lmoLgIT;-T|d#*1Z)zTej)qG z)g7Pua8kvKeg&rzWnPAr^lAOT+c7nLvi9I95mfzD@vb7P`qh)6kfNqP!i9?ZE0J)= zjnI^tX=Bv4=e@4rfnq?QIphmCtp-k`EM&d}S@AI2suTm-3r)Y!pBC)xvc5BTd~a2K z+@;}?Ueymc4#_({^+5uI$8n1OLY6J+FQm;4m+G4K&z?-*r?r~vnxrl4mLVTOXFJCY znTO?;-W{j;D|4iz8$QPcb%lyMaYY}70O*ZWoNDS~^i}Z0es*g9K!A}D2~xwc<7Q%Z zIsZ5h$Gx7W5Aulw$9xs?S_|vi)d_T_$jh%Kinr zIwMLFJ$HV|9s4Rv6YzMPR^2JS?X}^xNlRgc^Y=^=6zq23WFm*igvl%J2A;@DONdIK z=;ws+235mpU?WbKRdJrBVMNQ{r+u(TC8_$b>gq%KsRo0X&Kh3v9^LNv_&$PfgXTcf zUmCOF=4?(_$BDLl!i%)=5)!QkKRL1%x_JNHazJ$(PauNq8hlGTKzrlLd~rK~Ktu3# zIshgnawp)ZGH9JXb48glW-Z+S5Va3SEC-N1&9PPh&_$V1v;*%~1x}8LUW2sJ@uSKF zfvfUqYq&7nMp(o7>FGsHr}#dWU{%7M8+FuWa2e2It=H>Z1;(?A<8T89tQuZvS~Xzw zka0)L2JID{ii5EcF}d$}oOlTl5hXNzOaxWWzl;1BUd=zuHHT+}8eRxTJu+TQEhM7WNmDeoO^4MtsA+;dorpc_8h$`>*Xldg|9P!{Ye zias2W0(d$VeX0k;~e+8L(G`KKs@v;kq!b2W(CKHF(S4lg*v~{JK1=MAVJ~%L# zTw1|tWk9fdEqz)eX@bvc{u~A-4J=ikx^iX4e?>pzIuoo*3SMXzjrasw`n2DtC05m6 zh*}#iwpFF6>vnW4k4yTSY23QJ#iW>KTjKVLza`@VJbFx8E8`JCV==C8c%I`j)2^0D zX=VMIz@V?>4@Z1t4@FQUDmXebvo&`=_`;goaH%aKq9oo9 z^Utg99n+92xYX7cOWCvS zgSYSrA#?pAPk*;~@0B00mzXXGa}f`L{diRz?gAE+xi>rv9ARRt)Ah-e$NOUyN0_yT z{3E^%v#Dt~UgLpDNW)!9)%!hvBmXo~Xv>TBTG5A*U29bFk_~8$HGH8GZMf9dnRWy9 zb{QeIH5No1crWs_l$)h3X%d5-dEzv^F*A7yhrS&+$jWd&py`8i)$>bO5x+Plz?`n& z0q&5n%@iDK5H3SB9IUc6s`*DC2YCEw`m`R>tbx9+;FD^!;bL1MDx!O`eYmdp+^>`= z@2MAG%x;X6T@$$9-|#qa8aA~345~gDDSfgkj(~`z>gki=VwurW*2l97FukZa0+Zn2 zQc2(8Iyw3M`%^y_Y&-Pyb8(4nLpgnf>nV8lq3ADd*>I^X3!E(DlYar%6;)6Kj_T3P_daecPU*~$zdo{@w2p+pY=Nlbm#QGqGGS*pERP|}^ z;(Y?K%nc6%chuuBS8Mt)IE1)U@q}AY>r@l&9u#%UjFb5hfXMUk0-K*7nr z0Y!n1S29<*EoGbrVuIVRh9{iUTD5*?U8c3ns`*E>FY2pm`IokCxYX8IkDL-Qq^-L= zE@|b#Ts7qbY{1zUaIndYt}^Z^HKsqi;c?=$aWLT7QuN8(cG$aUc+P~{J^g`mAVx4f zYd9i6xTXNZW9!tq`0t-$P`G<1$gV3Sp7Qw6@HV ze3<7{JTkLFRB?pdGudi5&gxRYgGB{LEK{5%YB){NcwnaDWO=x#;|q&v!=<|PWE|LA z2n)I2!$$Fbk*8(!;@Q0VZN}wa-SDX&X_tiHnwmZc8Y+mw6ddsym{w3ppSJ9#Ca38m zbj-!>tKifTXlMs5eS)ZXxB9y42gFk}YWW;OUbvv9&wB^2m498YIxe*(Bw`iJk9}NV zn_?Gv`uNhXX^O}NOvyJqOuS~Y8J(&h1A?n16~~qq4jw8_hPFBM!);vg!#r8v(Y^*3 zDk=`2WmnbwIRx8gc4Ybco(4n2K3LIT7-btSwpAq?G!3KA_7ZsCq2i^$kpM9_hBIp=cj%C~#JgC5H9yxu7H~ieE6#YQOP8bu4K3SveaHr|h&OZge>rWidf|({y zPMPAp#SFseH)8z0%FLB5M}+0ve8|G1+Df=lES` z`gY(55p2PlujnV-d!R2UIEUb*{icFbXUDoI=g%!0xq(Y{nc1D=c`jvA$%yB>Q{E;x ziqCQ3Xj#HO=!VaJjWLffRGNND;1Bhxet~ffdrQW#cZUa;mOig*9^+QQsTb08r{*6l z&Ge7{{Q}STtbZR-Bjb_(Wn3U+n^DWZ5QH{dYRiH!QmF}(pc)X;C&tP3FPmy ztr4>g_LhRfp~1p7SMY>4V%R6iICU@RtKWAB;ml;R3LbC_1F}{Hk9hKE)cjFf;h{&- zaM~)TkfW-(R7U(`2BcS?6kO1CsB2na(X-Ccv!5JPt(N{N8f&|T7qwB*nr z42-nE&<*eSd!F^)b?>@=@?DEr`<%1mbM|NNeRe`N#WtGFW@a3s?UGZO_i7JRhoV|~ z5BZGuon$v!U<{omf5-@(M1T#ho{9AvzA#bgna98(NO0dFD-McnE+t!JjsVXQ!7iHb z!wLA>^0sUze_LSLw5@7$_busb3|dVS{7A;xZVM7b%*c<|57P$dnaiW$TaW%sTh}jW z4CmZO(?1(4<+<%4D0#|2KXrM7wL3TMHbF$=t0@h^-)ntFV@hwPA;Fn-pz8^>?Fy|DNW50KVvH0+f z_DQ0Kn0+9ofF;K%PqL$xTme7%DyOTUc<1a=ZRLpaB-5sf0Y>;7kc6xM)(~hsQWj+1 zN9EBU_C>ScJ*$ zt5F8Nhw|8LUy7B@Ku=`Um9<+c=NkU-GED-S#KIP3Xi}Af>+L=9=;_7fX;mY+aG-%M zqX2<0+Pe7Dv+KFfp(m12H(hG&?G16^z0GRfqSU_b;V}oN^_5!$tFzC_L?1|wZ{9QN zyWN0R65hCAf<2S?a3IiMa*g!?ep{xgOrHGgpLlOox*K*zLmOO@ZfW=YyhLQ!Pn^68 z#0a<^PIG9h2+p~z8|xQn_>sO@ueYxHZ%`UD}X@mkG{Nj6A7Kz zY*7qtkctlo6a$1~ZeMkLbVQ~EmRWu~`!I@VF7Y#|sVl;KA5{b0<^nOjb0= z&U)2L2QV288{}%x>b`4xVgzHVltz2KcmaCLD|t7HA@)R%^I5k2&pouRNLEv?M?NpY z9PLaQro%`I<^bZW;4LCvrYkD23_S*B(PGrsm)^4R=~5 z$;|tyKjPDNrtE+l6!#Xpzz7h5XaA7FB-YgEP2qmgkIG3NO7~JPEPg2F>RQ54}Q&zIFrP@lH-V6nFb0T zdmVr7Nm1by?Vdf~m{+l=6YieCWROtu(qg+lbtM6sLDy}2`A-ozqv$cjqBSl@pd2@C zC-6_!!d=Km#4qhR$XDw>oQe%{8a|%`{^mVS`Jt{bwGr~(I+l_9JjAOAWgXi+3}Ch+ zr&m%n2!3sX5o@MZ@{`T$_6);E{{Fo}d><#4+${d`Oh5OLfxn2yoGVZpz_cTXbLTx| zV|FV$CziL!a|=TJ1aOk)zT+5UpB9#rR1pnoe=C6`QR5AVQ^HnjTgv1R={YP+*6$kE ze>}zJ|K$SV38F;A8?K^Ki-BYOsIj~j2?ZK!ZaxlF+zM@WHQs`kM`nCQE3YjF$WDBc z_uAes%&r`TEtV5Dc2rwtN9b!WsJ=44eycvrI`ho!yMVr8q1_LG$Csj*%EncU?rsS+=S~^Hh;QJpc-P*Y96rCzdQz&k?oM=D$ZeZvMzRz=K`eM^v+^> zjY&P3#blTtrNfJPL3kjeug&-AECjqmF1Ks6lP7z6L2Xey|QtB4Xl z;McGgt#dLOT^fECyksat@;Wc%SWBCp%V6H`o^|5r)}4lmbP^3oZeEj+WEjs|m}VjQ z#AfUwBZDq#l^zH#3dY1MMnes&2_eR!rrc{oOzglLO!9o5wGeNZ4@y(1G7*%}+SB_X zyx&#iV{Bhz_5AblPZrpp3S<0U1Het-`sm-2pHJCkti@Fa@N@rK|3=v5vL>_MmR14A zyj9!e=7H~&u)OjTQ(obbS_~Nt4YUYg+7|ERzW>mU~8-VJo&+3F)x$4&v9|r z^jhmmxa09>-+Q_bdY;SXw!!Ai@Pt|r5;?!d(AeLF9IV-e1TnQ(+v~QD5u=>Uio84_ zx=xgMwT+>KOZrP4n`8qK+TDRpW1gysg7{m3M?2f!`|$t}ie>vV?*PS-Urh*40p%eM z;W?B-@nA&M_AK;=C)&`T1zrZmbD-K?4NlV~UZr#!Hm@&O_$fkaK;lf^^izIDS7Zl) z=HizadW1p;I{k_x2xE)3bA^JQejAZ8jlcthR&5GCy^@i?yE9s&4{vvs$O zz=;-+@XX7kDdUI;cR;ZaD+u8Un_`g0ea>rBJbJy^xdvow3bJQZ2m=Qkk)x&KEXKQ} za(gHsM8C)))LAHqL0^AN?BSX3Zy~B+akyEdVXbP#3^rZ%$Q~W%m>oL1APyN(qJof$ z(D15VqiPU_g+yo8Qbbm)$sFXeRL**~Lg|-xGD+n|6SW8=DI8#<+6Q3@>K|~|zPad7 z`vmrhcMN)8TnngjuaTvp&G`Iozm(@~(~CcLgjV|(FBnw4TXY)mHBa0$N8j5w^z&_e zWIx5~OAl`C82@kkPl3J|-{40S~9o}a6Sgw?`u7Vx)eG5t7L=8qpAgn^frwa$;E zGH~N4a+#S;f_ZsDmBp8W&fM33J@MpZr~ZNXnx@Qe+K)|QugpBDf%G)q{$oc-V4UcA z?`+&BlHEX=UK(z=KlLk`89w}VryJNm?wUYCQm-;c{P%iaUxu!;ev&qM;V#&iks#S$4 zvNqnT8cenyKs!|>0Q?shk!>L%`)r`71m_!sbzDw^<81=AKQakZN8Q;P^La>HdeSQT z1D?eKOG@L#l0hv0j-+iZRNATdThv&@vKE>s)dV!Oh7}iK)-i?{W=UTG5^OJ zd0HC$_aAXkXU1~aH=~H?@$q8b_H5|Nv;2yjzVKujWm%=@v<*fnEJ?YZjJByBy#+N# z`5K(OV`D`~qY6EE`mpcUPBQwgBUJpLUPoNxn!Fr*r+O0Z^Un{39qDS|IDhSguDC#h z9kt~8oz|+IH_7Y3pEz$?yWnoFXjf7;wMF|5on}J&SM}P~hFF+a=X}($JdZHC$K9mg z;C^}X{q7CX)&9&Ln1NrTloX}?oqjyG4gnf8x$c5w+|m5pJX~& zVE$SnTNElb2p0@8`p?FJW7jU(Li>toRxsjd!CXZM3~xpm+RcnSc#B(O}5g_ z4Dgu5{jFEm*4@#!r3(pU=a|UypX!W5;3T>2?0W5m`(g1fxLby%nn@&zCVDQeeaQG? zT*QXn_J^;uwmr+f&Lq{$g6k4Ld3p~g5us|n74-ajr{TzY; zCE8jd<2v~M!IesDGA!-zQW^kc9+lWRZu+y3bNL|-C-Vj0s}<(gs=_I3VtJ>AN@$3Y z`jbL8Lhz!n8_AFy$8uN1~TL-~4mfQ;N{`fdDP(PU zMk>18pi1b^gf)ZK!8kTTv3^kSw}`}lAK!W8 z_|ueH*PjYgwpx#nP*uI?kK&QO-ert&lG~a*StGmsBY3#EDL6hRc!=C7dW>e&>e6k& zLshuacx|3rTfbNv zVO8jrH4qF|YYCrwt)KEow7K~UblGB*x&6wF-EB?scULJ`6y3RLC(ey(qn;tElj9y8 z!byL`_WbqAbSZp-?1gGj9uDrVPr>C)%DrXYnt&&enI@TQbqmZT)Eq&m4a;yzxZV4xE%>d{UoA(Ds zk^A z`1t^n1z?TjQ`oOw$d>e+?jtQV8e(ayBSC#k0r{1yJ!J?FydjTO-<_||-w?WRjCBYc zwZO&gbx`?0m8mQYSyB1$1S7QcE5+)RuuS}ucmAOrGl*cc=DPG1QoVL@UaSorT=bfhxclf{dVB>w1 zO}AoS{oZCJ2HhXnub;=lRI=^1#6Ke#Z2& zJP2LT*v~R?o`L#R4Z6om&3AjBuwZ{jyD8>NmcGuo-3;c==B| zsa%MlvR*b>JOerX-bi8ekivZUC(On6KjXB?LJITW$5IK69s=F^_rWv?CiS+l_$@?K za%ex?j{5~KAoo&hflB%GrDmq|rDG3A*D%6f!9#`0a;bNLGh=%O=0`3uoBy3u`9tQ| zDw_w~yAslvoBi&8?cneiyFg~M!#7Q&W0{P~vGJK)k^KD;UkuRdJ0PU@St&`|k8(fM zI7Tj%7*9-jKd;rZy@cF3*ZntnCcas{*4V|NITy|C_v5(C=9a^_FXqn*TDPOpFX8rIL>Wl7YD8T2*;Ksl$EJm zETi4~v&5v|s(_Cff$3K_Z@W8A8-`6qT98QW(d+6a9UaGi7KfH{Q=0lS{?aMC_L?my>Xp;yV0G9*Z{2R-WUb zg^#I3rV+k}-wrJjX{nyKYxT4VLN75UtU^dZl_YlnHli}+Ce&Y0U9-guAFYVY#bu%KpX;!v0VlC7?Kc#p9e$YVwhIm|p0ckrCONJS` z`)mtLC^s0lCl^En=?^IFzrh*D|Am@vtIGWKV5|vW`k@8vsp>2AU5+-bZgl5|dlWe? z3yGCU4|#MYkqh_%omM9NfXs3G(m)P#^I5yk-=gKsA}{-9$o=P3lptSrKTjw2f8qxr zumr!@qp#5kDt`b3NOjkYX`gHTk5~7OY^S$i@;}(IZfws?&p`fhoa42+CZ+=ZRSzQn z-_R%Z?&{Ztmr(V4xar@i|6fB#{=akm?e|49FRAW~gyvlBtrWWEg6vk>gL6rlnUn~ou|80wIe}_+2i?{I^Uw_lWKSO6g z8o6E8ny5qnBugvR|4L(*<(~beUypzOf1=`N>v0x8@`F%g52RiF3x*lrrQRVwTD3dh z`edmMoF2UIr26M|4uIdr>DnLQ|6fBtx%ht@`iYNOa^e4D=vDf0{hb0vSPAa_n|Z`8t`eR+-=q*W%QbJckP zcd6ETxW27vqqj(iGM*^AQW}|>1Oqw=Hd{E|15`toC&1sFdJb2S8s$Nm%$1{CZhBy3 zpztEyVh)zhLjcgJa|o-hoL9f>c(D=!!K>{HONXF)ke!w++j5)-qvA8TJ^_{JKl4V$ za(QZaSytwJN)?Y-dD;kFiwGOK9=^xa&3oh_^P_(zTm~vG|IW?;usp(G%L>B+JScv1)ck#Vl-qt$shc#B3&V=(N$(mXulum0nMZWYyldLh=#`(Si<$;T2y^HDW>pQ9%(|LzA{WUzoZ#uGb!*kw_ zE4w493g8nrwSc^_XFqc9ff_ix6#NNyraYwOPIuH=22!iP?HMAfULs3y1ssrG+Gjgc zpJ>jj{=O1Ms$^p=cc(xYPz5q7J@rfqov_1JlRC_&=K@LlCDA}5t z$0u9m@gU=KfWAA)eyLf(lc)G9&XIstQv`$SFZn9Xvi^JE;u^4{s*90yMeiZ@eXw97 zIlTalh@>M0z09)I-*rDFGYQj*gHajT8*~wzzg=NFu`Cu&ncu6%EdhoQZ{xI%qJZnTfD&I^OnC%G~N)km=`6 z2Hxt*Lmyd%H6Ud@Q>Nmk6)p+PHrxHpq+t@mWxLUxL%73LF0Zewla**D--Xm3WWFV1 z9A$-1DAy%mQusBUK1cpYv?PdMUxsbfK?|yq^`XD7k|OAX=)a#@v%4l<(3E7`NOc^B z-Y>ISHQi8aZyiPptQg$#L6C(>ws#H<8F~+D`f1sP+OvLI#Pq`^vwooWIQ(K7Or$y= zm&RIMU7SL+&rc(Mi!qlIW0*fgH{=#tt(}Xpa(mQMgYOt5%gt_577c% zS_KRN8Wq7paU5EZeO>kMT8*WEuk+2<$Axl^7xhMZ7o^-5nwkC!L&}MJc6Q*;{AUIW zOi(*>IICS`uh}0bD*^i&Y?c6E^>5FP#4lQj>J`E7V(Gu==fbQj455>;h4DA0(~xR* ziUsFe+toYA^c?x+1T#fmQJJ*9By?lGhxjv&){ymFH=ijdxidrYm*Xi>v|mdbC5N6W zo0Bxti@KnnPW)evzh~@jns(xEnDov8grmL=F2F03den%N_@Sz3eX0@Mg8}1xhm~Y9 z@*;a}^YKjL^~RqP=kdWSjs(YJ(Tg=)QNGRaj$JCW@r?2aF6dx<2rfSE_A)hqJ!_>* zfG9@LKrpKV?jgdgzH#y1blrK&@)|~NK))Rr%Q?rFXqw3x>fn3R6|BU)nnH}k67~Mj#<$Ck>e&{FlqftBri|qv6Rx$ zPZpvux%eYi5vmibX;$6(*)n$h`(W*g%|UK+0zoo(|0n6)1T_O-I26ERUNA_22LigSoLyA2tYuj_~+a6~ObByMINDWH0E>uM{pMLgS zC`VW04OFF=WjS*1_LF>-Esy3Gv5L)t5U<(!q#E6^*|FX zGcDifdlVA7RcjDE%7m$zR2aR;4@UrO*kh86#NUn=P=ddCaU z!H*k;uYb?9EDXV~wrGwo?$jS2OeRSCFIq@?>CnPsl7$4bU$$V=$EoF9y@zKm zgh=M5?!}GIRJ?_`Pp|CwD4=CYW?zieZ6W8*0BQqAjL$4*umKRm%q%oK0}7R+OXU&&FouJ5dDULsd(#+c|s zG|2DAl&BP4)3+;mS+0uu_4~n$5+na0(_lHH&1+pQP;WJ=c@uJW4AA(RD^PO|5=7B3 zCzks{bjZFlnr&HGSaCpBJVkq)=}23q1rpz_!k$h`aew)v-4DCmfub8mfyMTjFS)&U zz&lF%FmTfhEEbZeti%|T*OLBT#%n+?z`K{5!3pe2OI-042M0L(N=-U;t! zJ@BG84Ibu)H>LHg?TkrYI9C+~K1NJY5+X-MN63E=wDYm$@;)kiwV3%{F%%9YRcqIXvr9v9Gd!Ufi|qK+-z$<3&L*Q|9Fj zONf`2>b3R2ggr&T+ek0+#?2$&zmAxbnSuzC_dnTMmeEzpWV~Qj24Zt1 zgoVM0N=HAJz$bOYaee57ng-2aE=7-ynRFgV&4?&BJIPvgjaTb$!_Wv}dFj};NS-Yo zJR&#YQFicF7tHr67=`3aC||+%J0+cFr~zgqKo(_|)2#xE+e^k*O{?N?Q1Uigih&=g zHHHd#6bb_zE-P{q1}Ef0u5VT(R(?q;+TO1@R2*Ijv0bcNoF03XI%(PnOXj$C!=hfYo>LQ%X*Kd*9o(fvLob#hI356*Uyc2 zDF3Q2L%EFXi4x1g$&|*-f3O#Ao$?aYkN((9s31@o69~JI=@^O0t)>ALaLbx{{CJbw zU=0)Y>tFd!w;)EasiXhkETeK`aH4j{{%|KM)F@J(3}xiquGpF^c?)H~?J2ZyI#6y* zh!zlNrsZ$JWLzSDl1$pL;&R*G$boKQD@5RDvT%}2XHKX4G3zo#OI#31no{Tm`*xxd zIdsG*aA&MlP$16*T z)%)7(4gk3U-fzE`NtzCL{XUcL26S*Ow`EoBFX#b%_&0;?lIX_y&zbl6^`eK^m}`(_ zL9<%O)0~|VjpINq19iA)hW_OoJLjScC6mv2c7SU+=3@2L7sh2J@P@x_q+9fPm^o^& z9*WVSoU%n;bZRT4O)wGzDKnkY-Ese3*VE(25W^S}2$=923-X&zX${Mt4gF1maR>kM zsPG{lbcfAXGV$#jPO#W6V;8Lpr`ES)srnaA_V^r!*Hc4MrrRp&c$#BUjP}lZ>CK8* z#Dqc`Jy?Q;`Wj5Zlw3un@?Q}u$mfmTCv$`LEFB1hW--yGdZA@w#G#ZrCZ>|8rcHMN z&X!T9uwF@2l6#6kv^FX{&|w|=ENY^sl1^Nr*o!o51$pdX&~(^UrCi47KE*SqfSLuj zB=)I;59Z_`dXIrW`G0+xG(8jNKYle+Ip9XxYmv_#7+DRD^ljke`K>R&MY1-3XRx(Mt$H;b9!h{BUC&fJ4=p^X{s-`az0Ae~}`oNqyOHY^ep>%3m!@$S= z8A@QLA=IJ``=7QRq6HU?s#+egQ6!=4oNKy*L|A*2D*9G5~SnxuN+LL?7I zO6+M(>que0Xrt&U$(`+7fqoH+d{>MBFHvZ@&XU{x6up4RWpQ)~)wswL5RCSGBTGCN zW%%m`q8S|#VJ$v{UT_)VaEtpoXY)r+gLP7r5}Y$*HianUN75QnT6)6o_v&zsagBo>gaPM4BsZ?|iBsMOPuP8h&;h8|#YQH*XTu7nm!5ss zQwZq5KWH>O`IruW6o5xktkPFXc9K{BK1q}RtL7B@_a^`L^STM|jfq?3G*e{FXSc!o z^21NcCe)pxqX{yH!>3j1*pNOF{akoYFHzTq$ipY~?lN&(a1MqOi%t(8M-CG~bIPgt~s}?oysgL-)^|SD%8uZU6nOc`{C= zMncnbmF;o|KK=0D!NdrBDt#*5E*>||RH?)je4|p&`wJR|-H;0_F5V!$dSx&~M)-Q{ zwSaJ50wj*pv5oCcm<^{oI(-C1K$?Q{i{R$vyFOVEK2W=IBYm}~wQ05!8n*Gp}i{j?Y;8o$;+g2}yQgt1ctw{UNOMhE+EWxq7-o>wAp5kGi z5P84P9$SF`g;MNucc*0QA|uz}ugAMT7*0Jsf7Z8z*mir$rJPdC344sIrZY+wX(l$& zulS`UC!9bZU;{HJN{4!gGV{LjA%n=GwhgyHnhok$k?N8Lad0Lq@!8yczq*8j%yQ;Q zlw@&h(d=_B%zaz{uh?if;0+10xBnDCG=f|*NYt~VW-p!hP0>%1IBC)FkKd{F*Np^^?ey3EOv#OqZL~WUrgqHttGEO=orxMo*M=CX-dgT~@ZsZ^G zHT(Tm)v2@myAzZ*Xe;~zD4jcSg#a^2(hxMA5YU-(Ci8Av>OW|qFj zaX;^Yzsje@2PAct9s~WT8*af>vjw_37rLc?RUmtTa73iQ=&jWusH+FZ%tKI2#@ox6 zRKvELFPA+lZ&{yh!3WDTUH>Gj_YVY)NswBz3)=GQpp!dQ5wWw2VR*A1c89m2DVlrP z6!%&$S3C@nzHqY7&(DTyv10w9LPp`M`&Qa|F|;~}Yj)QFLBtYtQ|XiBJ`mB2PL-Ws zVuJe^x45O*+Au0NQ!RtX2!#>9?Xj2%B92OWMO9me(AcZumUitEh-Nw}2lo`8V2P&> z`0i-*`A`sU)jiQGyhz(T5g}ChIldA+$opJ)k@EEOu_3AN>1T6NZ0-c931k-W z9Z}l$sjaIymu#oVcVBF={Kxu#P!R8p6JLCymT!ITa_3)^yqCX3W9Q4H_vTJx?6pZb zEI_TpBqvd2ba7D3TCEo-nmp|UWbWsGPEjhaAnzMv7UN{&dSg{yr9nn#KIa_Q|CCx< zUC`HLlZ+@xgW2hJp7mGBqHHIp)2l&7va@0${hy*imb#95q}MgzDHw)IR;SY!)Cfaz zHkEl_(PDp>Z@v5hr7MOo1-?+BlHTljRT%gi>3P%k0&1MqSK!d<*LAxKyglm zISeP5?2Y_}dlHYy^iIKx>9X~qI84)5dJlh`JTV+%3oR7(kMtjItb>|br+kK2UknTm zsYaPOl5!RCpOz19WB%~@OiH)pajj!0t}l}@eO`%PtuuA5*li?JSTJ@AbLstCxUWKc zgs`4Icd}=WLnbEk6dn8nV^(=Mt4nUnQi2>&6wrp01JaPI5$ZFCz}Bpc$NLMq@*8+{DT z;cy?1cj9Fr#GtSUG#tud2g}}O!4{`53dzlIzAigRR`+2bm~*QJh)`Xb(4)N(`Gc*X zD`L@vT;Of*eZW(A$#2Ev!#54=(_Wbwt9Gx;gT4Q%Z;(?3MPdHK!R$yJjB@xN6p3e5fv62_NH_9<6+-mjqr;{R_`uqyd?KK@1$Ng z3Ma*(2C+XHM}bT*erSjw&>dvDjOUFb&1i2DW=n~D4?*slXGuW|LEFn?)O2pOKQmgo zpFY=%-xlxn_Gf2i$Y#^>i8R*X-E-UIPu05uvo=T{%p*mnp*`u*lhP6o^rbmnP%#K@ z%p=Ke`o1{3&7)Z8P{^NM))sV?;-xP)@H}FhoUZ5UyE8H*);0gbD(#AF#V4iPrQ`Yt zx#*#AA@vg{1#ewa##&6`&HLz%FsNPzi46cc`Hr;gK=)PHo(eRk$i_1ZpCb1Wa$N^! z0~;6f&iQq2)clr50mP0QT^v&_?-&=A9uvm;sLh^dB1@?frY=Cw+RWrzYy7^?T(&Ev zVy)Q`+~9=_mDJq0eTt_F9@`SlwPAqODEEVz&o~a(uh1brVa_WRx7-j%CWI-F^NZLj z+b3EPX6NgI9G5n|g{GzP8{e*=39-MQ^H0vbhlxWuC~1SxNMHexNk>HN^i^Lv9>UB_$S}S=Mg#hc@s_&Od9~Ek| zqoyN-ZIl8;pEbx2lqmWjeHk{*pNA{e+r@vjdJv)Z_8-ur(?eiMEQx%zctROoqlIE2 zvIyN@>Cqz6ft8gSy;QN%Nx5QOIv}xaVgS= zzt)!1G6JOkV53Ys+co3}RFaEwQw|L>p?_q(#2U-%V#4^1q>C&-@Dv`t1$^a>_vyIK)WWYnb zZ1Ha>(`~G{>8sT<`Ev$yYGaZTp4&Lz;8=n3z4U3?d+o<>J>F$&#F6}%$5f+(a0Eu0 zb139BEz(&AXJ%7gpa?Hvlszzn3UIX)VQW3xou2TRs(4$fDkJ6?SNevjlTMn%e-han z%VvzTIeV-iWJrI6+G#=2T*u#%Q|LrP^fj{-3E{q16(^#ue7~1;KR^Pwm45(k=C{8?M60UOzIh)TppX_b#c|-2ZddoCL%W1RkCcVR?KW_ ztlt5{Y?~uL$%yuQnJQs7A54D(B@k*6Ea578^FvU2o?Kne)-y{@O zbFNfY^=KI&+pu_zRn@&yIC*4hfQ>ON$VeRejYg2!kJDZR=U0K~L7KA}?n4kc^O(WH z;t+V(-$Q0mC&e~3-c{pYbOxWI-m&o{eK|#3`uNUcwwVhV@<>V_2*nh}!n>zMR+_>) zl*pK?fS3>;4(y`f{0bC0$A`PGc(3}Xh=!5lu#7hB9hf|xYf*j0D;mouoF{A7wt9wcgx|J7xw@DvBEpIDi~>v>JP`PrNE_Hd!y2=vjRUWEa>$u}j9SDWN<9C)Qzi~)n zx!its7H7Pk@@v`vlu&A{ZwND_h>JaB^^G*`cU1B9eZ?@_DRznQ}x8%x7qLI-{H;kGQl`gnzsRr)@Qf zE)Sbg_Kc!nl8<9@mqlplKm6>`;@tp=Yn=&5!pdaJ1eV!htAewr0X<8?-F3%tC&P@uo zefO{Mm2~XH9->a_udvHqtla#QFGJgbH9vIdPSIma^*E&0!!RfToQ|;T%0=D&4T6~u zfgUK~Nl_%4%;84NcqnDN^j_ZL{{xGwSM_YEavoT5&v{I;-q@g}=eDccp9ICLD-R>H zbxfk!SL>V%_ILkfu2_`*TZH3_zXpUYHAtGPN&FSHq}$tJ9e$qV)MXHM(Z=+warTqW zAX#TkU%6jDv={%*$3!DPCW zYm8faAr{2a{r5q2H>U|}+WH=}8`{2KZ_<8`Vp;&MROciC)+R2mqeec3*({>0)xO{h zisu6~L4PzN4ytR|JwJ11MFB*itd@+jjOC-6CthW$)<`mC7I_SU$P(#4>&@RdN|DGf zI>uPAWxBYdoqSzuYalFee{}jYvI85^GXAc)d>3vEt;JkC=cUXm2+mKWTBZu9+_Vju z$$PJnPs!%tFQk2rztr~qXr1Y{iO@HS%3d|3nN%etwcP-fZQoh<_gYv=3-dRfd!Bsw z1ts$7L>nIWS^duNVK%omI*=M@)Z*xxqBi>A$JAOyXuh!~(+*V`KLrGpthVKo=W?xLx_tuRv?dC=ex?#@kgEHG$K$&fYh)R5FJMgV~^yj-p!| zxV}G*tJgV;J2tdld;6ZJQvWT+nRhoiW+$1ttcaADb$LqE%X&Sr3Ghwjg~j8z{L_g* zj}~3X-H?a;Lx=p+B_QN+FD2v#>Jf6g(DQJ1ClGQC2R!XOJ+?lb%0F)PJT3G*}9S$KBhdKf3XO@+sS|2fUMtdWv)ML0G<$EdhQ_tA%>%wA$KwIPp4nj zpYB3#4_gJEu48)c&ybm(4aC;5sr4U=ha36(J^9Cz%%1zlmCPq>)}b3Fe^Ydn{{tEs B#B~4w literal 0 HcmV?d00001 diff --git a/异常聚集度论文0513/author.tex b/异常聚集度论文0513/author.tex new file mode 100644 index 0000000..8f51f03 --- /dev/null +++ b/异常聚集度论文0513/author.tex @@ -0,0 +1,434 @@ +%%%%%%%%%%%%%%%%%%%% author.tex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% sample root file for your "contribution" to a proceedings volume +% +% Use this file as a template for your own input. +% +%%%%%%%%%%%%%%%% Springer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + +\documentclass{svproc} +% +% RECOMMENDED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% + +% to typeset URLs, URIs, and DOIs +\usepackage{url} +\def\UrlFont{\rmfamily} +\usepackage{amsmath} +\usepackage{amssymb} +\newcommand{\erf}{\mathrm{erf}} +\usepackage{booktabs} +\usepackage{graphicx} % 插入图片 +\usepackage{caption} % 自定义图注格式(可选) +\usepackage{subcaption} % 多子图(如有子图时使用) +\usepackage{float} % 强制图像位置控制,如 [H] + + + +\begin{document} +\mainmatter % start of a contribution +% +\title{Anomalous Crowd Gathering Prediction Method Based on Spatial-Temporal Graph Convolutional Network in Multi-Camera Surveillance Systems} +% +%\titlerunning{Hamiltonian Mechanics} % abbreviated title (for running head) +% also used for the TOC unless +% \toctitle is used +% +%\author{JiaWei Wang\inst{1} \and Ye Li\inst{1} \and +%Li Zhan \and Nan Zhou } + +%\author{JiaWei Wang} +% +%\authorrunning{Ivar Ekeland et al.} % abbreviated author list (for running head) +% +%%%% list of authors for the TOC (use if author list has to be modified) +%\tocauthor{Ivar Ekeland, Roger Temam, Jeffrey Dean, David Grove, +%Craig Chambers, Kim B. Bruce, and Elisa Bertino} +% +\institute{University of Electronic Science and Technology of China,\\ +\email{I.Ekeland@princeton.edu} +%\and +%Universit\'{e} de Paris-Sud, +%Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\ +%F-91405 Orsay Cedex, France +} + +\maketitle % typeset the title of the contribution + +\begin{abstract} +%The abstract should summarize the contents of the paper +%using at least 70 and at most 150 words. It will be set in 9-point +%font size and be inset 1.0 cm from the right and left margins. +%There will be two blank lines before and after the Abstract. +Urban surveillance systems face inherent limitations in monitoring complex crowd dynamics due to the restricted coverage of single-camera setups. This study proposes a novel Spatial-Temporal Graph Convolutional Network framework for predicting abnormal crowd aggregation. Our method introduces a composite anomaly aggregation metric that synthesizes three critical factors: the spatial distribution of abnormal groups (core anomaly intensity), ambient pedestrian flow variations (environmental sensitivity), and suppression mechanisms for regular large-scale gatherings. By constructing topological graphs based on camera networks and performing spatio-temporal convolution operations, the model effectively integrates multi-view information to identify latent risk areas. Combining the camera topology structure and the spatio-temporal graph convolutional network, this method can accurately predict abnormal aggregation points in the spatial and temporal dimensions, and effectively identify potential abnormal risk areas through multi-camera information fusion. \dots +% We would like to encourage you to list your keywords within +% the abstract section using the \keywords{...} command. +\keywords{Spatio-temporal graph convolutional network, + Anomalous crowd prediction, + Multi-camera surveillance} +\end{abstract} +\section{Introduction.} +%With the rapid advance of urbanization and the growing demand for public safety, the deployment of surveillance cameras in urban environments has increased dramatically. These cameras provide real‑time capture and analysis over large geographic areas, yet each device remains constrained by its limited field of view and occlusions. Consequently, once an intelligent detection system flags anomalous behavior using a single camera, it is still challenging to infer where the affected individuals or crowds will converge. Bridging this gap requires integrating trajectories from multiple cameras and predicting the final anomaly aggregation points. +% +%Recent research in intelligent security has increasingly focused on multi‑camera systems, aiming to enhance target tracking and anomaly detection through collaboration and information fusion. For example, \emph{Multi‑Camera Tracking and Anomaly Detection: A Review} surveys methods for associating observations across views and fusing detection outputs, while \emph{Deep Learning for Multi‑Camera Anomaly Detection} demonstrates that combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs) improves both accuracy and timeliness of anomaly recognition. In these studies, constructing and exploiting the camera network topology—a graph whose nodes represent cameras and edges encode spatial relationships or fields‑of‑view overlap—has been shown to provide a global perspective that is essential for early warning of group events. +% +%However, existing approaches typically stop at detecting anomalies; they do not quantify the degree of crowd convergence nor predict where anomalies will concentrate. To address this, we introduce a novel metric, the \emph{anomaly aggregation degree}, which nonlinearly weights both abnormal and normal crowd flows, applying a saturation suppression mechanism to avoid false alarms in dense but benign gatherings. We model the camera network topology as a graph and embed the time series of aggregation degrees at each node into a Spatio‑Temporal Graph Convolutional Network. This multi‑layer fusion framework jointly captures spatial correlations and temporal dynamics, enabling accurate prediction of potential anomaly hotspots. +% +%In summary, our contributions are threefold: (1) we propose the anomaly aggregation degree, a unified index that quantifies deviation from normal crowd patterns; (2) we integrate this metric into a graph representation of camera topology, enabling global inference; and (3) we achieve high accuracy prediction of abnormal sink points in complex urban environments. + +With the rapid advance of urbanization and the growing demand for public safety, the deployment of surveillance cameras in urban environments has increased dramatically.These cameras provide real‑time capture and analysis over large geographic areas, yet each device remains constrained by its limited field of view and occlusions. Consequently, once an intelligent detection system flags anomalous behavior using a single camera, it is still challenging to infer where the affected individuals or crowds will converge. Bridging this gap requires integrating trajectories from multiple cameras and predicting the final anomaly aggregation points\cite{MultiCameraReview,DeepLearningMultiCam} . + + +\begin{figure}[H] + \centering + \includegraphics[width=0.95\textwidth]{camera_topology.pdf} + \caption{ + Temporal evolution of abnormal aggregation density over 12 consecutive frames. Each node represents a surveillance camera in the simulated urban network, and the edge indicates physical connectivity or proximity between cameras. The color intensity of each node reflects the computed abnormal aggregation degree at that time step. Darker nodes indicate higher levels of abnormal crowd gathering. This visualization illustrates how potential anomaly hotspots evolve over time and migrate through the camera network. + } + \label{fig:aggregation-sequence} +\end{figure} + + +Recent research in intelligent security has increasingly focused on multi‑camera systems, aiming to enhance target tracking and anomaly detection through collaboration and information fusion. For example, Multi‑Camera Tracking and Anomaly Detection\cite{MultiCameraReview} : A Review surveys methods for associating observations across views and fusing detection outputs and Deep Learning for Multi‑Camera Anomaly Detection\cite{DeepLearningMultiCam} demonstrates that combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs) improves both accuracy and timeliness of anomaly recognition. In these studies, constructing and exploiting the camera network topology—a graph whose nodes represent cameras and edges encode spatial relationships or fields‑of‑view overlap—has been shown to provide a global perspective that is essential for early warning of group events\cite{TopologyAwareMCN,LearningSpatialRelations}. +However, existing approaches\cite{SaturationSuppression,NonlinearWeightingAnomaly} typically stop at detecting anomalies; they do not quantify the degree of crowd convergence nor predict where anomalies will concentrate. To address this, we introduce a novel metric, the anomaly aggregation degree, which nonlinearly weights both abnormal and normal crowd flows, applying a saturation suppression mechanism to avoid false alarms in dense but benign gatherings. We model the camera network topology as a graph and embed the time series of aggregation degrees at each node into a Spatio‑Temporal Graph Convolutional Network\cite{STGCNTraffic}. This multi‑layer fusion framework jointly captures spatial correlations and temporal dynamics, enabling accurate prediction of potential anomaly hotspots. + +In summary, our contributions are threefold: (1) we propose the anomaly aggregation degree, a unified index that quantifies deviation from normal crowd patterns; (2) we integrate this metric into a graph representation of camera topology, enabling global inference; and (3) we achieve high accuracy prediction of abnormal sink points in complex urban environments. + + +% +\section{Related Works.} +% +\subsection{Camera Topology Diagram.} +%In multi-camera systems, camera topology graphs play a crucial role as essential tools for describing spatial relationships between cameras and their field-of-view coverage. By constructing graph-theoretical models, camera topology graphs can effectively represent connection relationships between cameras, overlapping coverage areas, and information transmission paths. Each camera is represented as a node in the graph, while the spatial relationships and field-of-view coverage between cameras are connected through edges. This structure provides the system with a global perspective, facilitating multi-camera collaboration for target tracking and anomaly detection. + +In multi‑camera systems, camera topology graphs play a crucial role as essential tools for describing spatial relationships between cameras and their field‑of‑view coverage.\cite{TopologyAwareMCN} By constructing graph‑theoretical models, camera topology graphs can effectively represent connection relationships between cameras, overlapping coverage areas, and information transmission paths.\cite{LearningSpatialRelations} Each camera is represented as a node in the graph, while the spatial relationships and field‑of‑view coverage between cameras are connected through edges. This structure provides the system with a global perspective, facilitating multi‑camera collaboration for target tracking and anomaly detection. + + +The application of camera topology graphs in multi-camera systems primarily manifests in the optimization of information fusion and data sharing. Specifically, they enable the integration of data from different cameras, particularly playing a key role in cross-camera target tracking and abnormal behavior recognition. Furthermore, camera topology graphs have significant applications in group behavior analysis and event prediction. By correlating perspective information from multiple cameras, the topology graph can reveal group dynamics and promptly identify potential abnormal behaviors for early warning. For instance, when multiple cameras detect abnormal trajectories from a target, relationship analysis through the topology graph can quickly determine whether the target interacts with others, thereby enabling early warnings for group events. + +\subsection{Graph Convolutional Neural Network.} +% Graph Neural Networks (GNNs) have become an important tool for processing non-Euclidean data. Among them, Graph Convolutional Networks (GCNs), as a classic GNN model, are widely applied in tasks such as node classification, graph classification, and link prediction. Kipf and Welling first proposed the GCN based on spectral methods, which effectively captures the local relationships between nodes by performing convolution operations on the graph structure. The core idea of GCN is to aggregate and propagate node information through the adjacency matrix to achieve efficient learning of the global graph structure. Its basic operation is defined as message passing through the product of the normalized adjacency matrix and the feature matrix, thereby obtaining node embeddings. + + Graph Neural Networks (GNNs) have become an important tool for processing non‑Euclidean data.\cite{GNNReview} Among them, Graph Convolutional Networks (GCNs), as a classic GNN model, are widely applied in tasks such as node classification, graph classification, and link prediction. Kipf and Welling first proposed the GCN based on spectral methods\cite{KipfWelling}, which effectively captures the local relationships between nodes by performing convolution operations on the graph structure. The core idea of GCN is to aggregate and propagate node information through the adjacency matrix to achieve efficient learning of the global graph structure.Its basic operation is defined as message passing through the product of the normalized adjacency matrix and the feature matrix, thereby obtaining node embeddings. + + +In recent years, improved models of GCN have emerged in an endless stream\cite{GG,DD,DG,MS,IG,MD,MO}. For instance, Graph Attention Networks (GAT)\cite{GAT} introduced an attention mechanism, enhancing the modeling ability of neighborhood information on heterogeneous graphs; GraphSAGE\cite{GraphSAGE} proposed a sampling-based neighborhood aggregation method, significantly improving computational efficiency on large-scale graph data. Additionally, applications of GCN have gradually expanded from traditional tasks to areas such as recommendation systems, social network analysis, and biological network analysis, demonstrating its powerful ability in handling complex network data. Compared with traditional machine learning models, GCN can capture the complex interactions between node features and topological information while preserving the graph structure information, thus having higher expressive power. + +In the field of intelligent security, GCNs have been widely applied in the analysis of camera topology, especially in tasks such as abnormal behavior detection and target tracking in multi-camera surveillance systems\cite{AT,AG,AGL,AH}. By modeling the camera network as a graph structure, where nodes represent individual cameras and edges represent visual or spatial relationships between cameras, GCNs can efficiently learn and extract features of the camera network. This approach significantly improves the accuracy of abnormal behavior detection and enhances the performance of cross-camera target tracking. + +\subsection{The Combination of Time Series Prediction and Graph Neural Networks.} +Current research combining Graph Neural Networks (GNNs) with time series prediction models has made significant progress in spatio-temporal data analysis, particularly in fields such as traffic prediction, environmental monitoring, and public safety. The ST-GCN\cite{STGCNTraffic} framework, by modeling spatial dependencies through graph convolution and integrating convolutional structures to effectively capture temporal dependencies, has significantly improved the accuracy of traffic flow prediction. TimeGNN\cite{TimeGNN}, through dynamic time graph representation, can capture the evolving patterns among multiple time series and has a faster inference speed than other graph-based methods while maintaining good predictive performance. StemGNN\cite{StemGNN} models the correlations between sequences through graph Fourier transform and captures temporal dependencies through discrete Fourier transform, demonstrating outstanding performance in multivariate time series prediction. In further optimizing spatio-temporal graph convolution models, Li et al.'s DyGraphformer\cite{DyGraphformer} model combines graph convolution with Transformer to dynamically infer time-varying spatial dependencies, achieving excellent performance in multivariate time series prediction. Dai et al.'s H-STGCN\cite{H-STGCN} model integrates online navigation data with graph convolution, improving the accuracy of traffic flow prediction, especially in the prediction of non-recurring congestion. The STS-GCN model\cite{STS-GCN}has made breakthroughs in the spatio-temporal dynamic modeling of human poses by decomposing the connections between space and time into spatial and temporal affinity matrices. Additionally, other studies such as Feng et al.'s GCNInformer model\cite{GCNInformer}, which combines graph convolution with Informer to optimize air quality prediction, has shown good stability in long-term predictions; Lira et al.'s GRAST-Frost model\cite{GRAST-Frost}, which combines graph neural networks with spatio-temporal attention mechanisms for frost prediction, has significantly improved prediction accuracy.The STAGCN model\cite{Stagcn} proposed by Ma et al. combines adaptive graph convolution and spatio-temporal convolution, and performs particularly outstandingly in multi-step traffic flow prediction. + + +\section{Method.} +\subsection{ Spatial-Temporal Graph Convolutional Network.} +The input of the model consists of a series of graph-structured data arranged in chronological order, where the nodes in the graph represent different spatial regions under various cameras, and each node carries the features of the corresponding region at the respective time. The edges between nodes in the graph represent spatial adjacency or functional association, which is used to describe the mutual influence and connection between different regions. The input data can be regarded as a graph tensor with a time dimension, where each frame graph contains the feature vectors of all nodes. + +The model employs one-dimensional gated temporal convolution to model the dynamic evolution of the crowd across consecutive frames. This layer adaptively regulates the information flow through a gating mechanism (update gate and reset gate), sending the input features to the convolution branch and the gating branch respectively. The convolution branch generates candidate features, while the gating branch generates control signals. The two are element-wise multiplied to complete the feature update. The gated design can effectively suppress noise and irrelevant information, thereby highlighting the dynamic changes at key time steps. Stacking multiple layers of such gated convolutions not only expands the model's temporal receptive field but also enhances its ability to capture features at different time scales. + +In the spatial domain, the model uses spectral graph convolution to extract the dependencies between adjacent nodes. Specifically, an approximation method based on Chebyshev polynomial expansion is used to approximate the graph Laplacian operator to the kth order polynomial, without the need for explicit eigenvalue decomposition. Each spectral graph convolution layer aggregates the features of the node itself and its kth-order neighbors through polynomial weighted summation, achieving multi-scale spatial information aggregation. + +The overall network is composed of multiple stacked basic units of "gated temporal convolution - spectral graph convolution - gated temporal convolution". In each unit, the initial gated convolution layer extracts the temporal features of the nodes and filters out irrelevant fluctuations; then the spectral graph convolution layer aggregates neighborhood information and characterizes spatial dependencies; finally, another gated convolution layer further integrates high-level features across time. By cascading multiple such units, the model learns deeper spatio-temporal correlation representations layer by layer. Ultimately, the abnormal aggregation degree of each node within the future time window is obtained. + +\subsection{Anomaly Aggregation Degree.} + +In the field of public safety and crowd management, traditional monitoring systems often encounter the problem of distorted assessment in complex scenarios: methods based on absolute numbers or linear weighting are unable to distinguish between occasional anomalies and major risks, fluctuations in the base number of ordinary people can easily mask real abnormal aggregations, and fixed threshold strategies lack adaptability to dynamic environments. Therefore, this project separately calculates and weights the aggregations of abnormal and ordinary people, and develops a weighted algorithm based on a nonlinear coupling mechanism. + +When studying crowd aggregation behavior, if only abnormal people are focused on, the risks caused by abnormal aggregations within the ordinary population may be overlooked; while if only the ordinary population is focused on, normal aggregations may be misjudged. Therefore, in order to more comprehensively and accurately assess the abnormality of crowd aggregations, this paper attempts to unify the behavioral characteristics of abnormal and ordinary people and construct a comprehensive quantitative indicator - abnormal aggregation degree. + +The abnormal aggregation degree aims to measure the degree to which the crowd aggregation behavior in a specific area deviates from the normal pattern through multi-dimensional analysis of flow data, thereby providing a scientific basis for the prediction of abnormal points. Specifically, the design of this indicator needs to take into account the following two aspects: on the one hand, for the behavioral characteristics of abnormal people, a higher weight is assigned to highlight their potential risks; on the other hand, for the aggregation behavior of ordinary people, it is necessary to avoid misjudgments due to excessive sensitivity. + +We divide our algorithm into core abnormal items, environmental sensitive items, and saturation suppression items to ensure effective differentiation between abnormal aggregations and regular behaviors, thereby enhancing the system's response capability. + +Specifically, the mathematical expression of the core abnormal item is: +\begin{equation} + T_1 = \frac{N_{\text{anomaly}}^{\alpha}}{\beta + N_{\text{anomaly}}^{\alpha/2}} +\end{equation} +where $N_{\text{anomaly}}$ represents the number of anomalous individuals, $\alpha$ controls the nonlinear degree of the impact of the anomalous population size on aggregation degree, and $\beta$ serves as a balancing term to prevent the core anomaly degree from becoming overly sensitive or experiencing excessive amplification during small-scale anomaly occurrences. + +Through the exponential weighting of $N_{\text{anomaly}}$, the impact of increasing anomalous population size on the core anomaly degree achieves nonlinear amplification. This design ensures that as the anomalous population grows, the risk of abnormal aggregation is appropriately + +In the calculation of anomalous aggregation degree, the environmental sensitivity term is primarily employed to quantify the impact of aggregation behaviors within the normal population on the anomalous aggregation degree. The aggregation behaviors of the normal population are typically driven by routine social activities, occupational demands, or daily mobility. Even in densely populated environments, while these behaviors may induce certain density fluctuations, they do not directly trigger security risks. Therefore, when designing the anomalous aggregation degree, it is essential to prevent the system from overreacting to such routine behaviors, thereby maintaining its accuracy and robustness. + +To achieve this objective, the environmental sensitivity term adopts a logarithmically weighted form, with its mathematical expression formulated as: +\begin{equation} + T_2 = \ln\left(1 + \frac{N_{\text{normal}}}{\gamma}\right) +\end{equation} +where $N_{\text{normal}}$ denotes the normal population flow, and $\gamma$ is the regulatory parameter that controls the degree of influence exerted by the aggregation behaviors of the normal population on the anomalous aggregation degree. + + The introduction of this logarithmic function ensures that when the normal population flow becomes large, the sensitivity of anomalous aggregation degree to normal population aggregation gradually diminishes, thereby preventing excessive system reactions induced by routine population gatherings. + + From a mathematical perspective, the design principle of the environmental sensitivity term is grounded in the smoothing treatment of routine population aggregation behaviors. As $N_{\text{normal}}$ increases, $\ln\left(1 + \frac{N_{\text{normal}}}{\gamma}\right)$ asymptotically approaches a plateau, indicating that the system's responsiveness to large-scale normal population gatherings gradually diminishes. This mechanism effectively mitigates oversensitivity to routine aggregation behaviors in high-traffic environments, thereby reducing the likelihood of false alarms. + + The introduction of the parameter $\gamma$ endows the system with flexibility for scenario-specific adaptations. In high-traffic environments, appropriately increasing $\gamma$ reduces the contribution of normal population aggregation to the anomalous aggregation degree, preventing excessive system reactions to daily crowd fluctuations. Conversely, in low-traffic or specialized scenarios, decreasing $\gamma$ enhances the system's sensitivity to anomalous aggregation behaviors, ensuring timely detection of irregularities.Through this design, the environmental sensitivity term achieves a balanced response to aggregation behaviors of the normal population, preventing false alarms during large-scale routine gatherings while ensuring that anomalous behaviors remain detectable in low-traffic or specialized scenarios. This mechanism guarantees that the anomalous aggregation degree precisely quantifies the actual risk of abnormal crowd aggregation in dynamic and complex environments. + +The saturation suppression term achieves additional smoothing of contributions from large-scale normal population aggregation, ensuring that under extreme crowd flow conditions the system does not overreact to routine aggregation behaviors. Its mathematical formulation is expressed as: +\begin{equation} + T_3 = \frac{N_{\text{anomaly}} \, \erf\left(\frac{N_{\text{normal}}}{\nu}\right)}{\sqrt{1 + N_{\text{normal}}}} +\end{equation} +where \(N_{\text{anomaly}}\) denotes the anomaly crowd flow, \(N_{\text{normal}}\) denotes the normal crowd flow, \(\nu\) is the parameter controlling the saturation effect intensity, and \(\erf(x)\) is the error function, defined as: +\begin{equation} + \erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt +\end{equation} + +\(\erf(x)\) plays a key role in this design. Its properties enable the system to react strongly to small‑scale normal crowd gatherings, while its effect gradually saturates as the normal crowd flow increases. Specifically, when \(N_{\text{normal}}\) is small, the ratio \(N_{\text{normal}}/\nu\) is low, and \(\erf(N_{\text{normal}}/\nu)\) grows approximately linearly with \(N_{\text{normal}}\), thereby amplifying the influence of the anomaly crowd. Conversely, as \(N_{\text{normal}}\) becomes large, \(\erf(N_{\text{normal}}/\nu)\) approaches 1, indicating that the normal crowd’s impact has reached its maximum. At this stage, the denominator \(1 + N_{\text{normal}}\) further attenuates the contribution of normal flow to the anomaly aggregation degree, ensuring that in high‑density scenarios the system does not overreact. + +The saturation suppression term achieves a desirable balance in complex crowd behavior contexts: on one hand, it guarantees prompt response to anomalous aggregation under low crowd density; on the other hand, when crowd flow is high, the system’s sensitivity to normal gatherings diminishes, thereby avoiding false alarms in inherently dense environments such as shopping malls or transit hubs. Through this nonlinear weighting, the system effectively distinguishes true anomalous aggregation from normal crowd behavior, enhancing both detection accuracy and robustness. + +Furthermore, the introduction of the parameter \(\nu\) provides flexibility across different settings. A smaller \(\nu\) increases sensitivity to normal crowd gatherings, whereas a larger \(\nu\) makes the system more tolerant in high‑density environments. Thus, \(\nu\) can be tuned according to specific application requirements to achieve optimal anomaly aggregation degree prediction. + +Hence, we obtain the complete weighted algorithm: +\begin{equation} + T = \underbrace{\frac{N_{\text{anomaly}}^{\alpha}}{\beta + N_{\text{anomaly}}^{\alpha/2}}}_{T_1 \text{(core anomaly intensity)}} + \underbrace{\ln\left(1 + \frac{N_{\text{normal}}}{\gamma}\right)}_{T_2\, \text{(environmental sensitivity)}} + \underbrace{\frac{N_{\text{anomaly}} \, \erf\left(\frac{N_{\text{normal}}}{\nu}\right)}{\sqrt{1 + N_{\text{normal}}}}}_{T_3\, \text{(saturation suppression)}} +\end{equation} + +Overall, the weighting design of the anomaly aggregation degree innovatively combines nonlinear weighting, saturation suppression, and adaptive adjustment mechanisms, enabling precise discrimination between anomalous and routine aggregation behaviors across scenarios of varying scale and complexity. By appropriately allocating weights to anomalous and normal crowds, the system maintains efficient responsiveness in dynamic environments while avoiding false positives and excessive reactions. + +\section{Experiment.} + +To conduct an in-depth study of the spatial aggregation of normal and abnormal populations within urban road networks, this research constructs and operates a high-precision simulation environment based on a regular grid on a high-performance computing platform. + +The simulation servers are equipped with two systems: one features an Intel i9 11900KF processor, 128 GB DDR4 memory, and an NVIDIA RTX 4090. + + + +The simulation environment uses a 2.5m x 2.5m grid as the smallest cell unit. Every 4x4 grids (10m x 10m) are merged and defined as the smallest building unit, to ensure consistency in model scale.The entire area is divided into road systems and building zones: +Major roads (main streets) are 6 grid cells wide (15 m), designed as two-way four-lane roads; +Secondary roads (medium streets) are 3 grid cells wide (7.5 m), set as one-way dual-lane roads; +Tertiary roads (small lanes) are 1 grid cell wide (2.5 m), used for microscopic movement between buildings. +Building units are categorized into three sizes: small (4 grid cells), medium (16 grid cells), and large (36 grid cells). These buildings are randomly distributed within the road gaps, ensuring road connectivity without any blockage. + + +\begin{figure}[htbp] + \centering + \includegraphics[width=0.65\textwidth]{figs/simulator} + \caption{ + The simulation visualization interface for crowd aggregation; grey areas represent roads, red dots indicate abnormal gathering crowds, and blue dots represent normal pedestrians. The larger red markers are the destinations of the gatherings. + } + \label{fig:aggregation-sequence} +\end{figure} + +%该仿真环境以 2.5 m×2.5 m 为最小栅格单元,每 4×4 栅格(10 m×10 m)合并定义为最小建筑单元,以确保模型尺度一致性。整个区域划分为道路系统与建筑区:主干道(大路)宽度为 6 格栅(15 m),设为双向四车道;次干道(中路)宽度为 3 格栅(7.5 m),设为单向双车道;支路(小路)宽度为 1 格栅(2.5 m),用于建筑间微观通行。建筑单元分为小(4 格栅)、中(16 格栅)和大(36 格栅)三种规模,并随机分布于道路空隙,保证道路连通且无阻断。 + +On this spatial structure, fixed cameras are installed at various road intersections and key sections along the roads, with a field of view covering 4x4 grid cells (10m x 10m). These cameras generate spatiotemporal traffic data by real-time counting of individuals within their coverage area.Normal pedestrians (blue) randomly appear on the sides of the roads, with randomly assigned destinations such as road ends or building entrances, simulating the movement of regular pedestrians. + + + + +Abnormal pedestrians (red) are also generated on the roadside but aim for predetermined gathering points. Their path decision-making has different probabilities for choosing major roads, secondary roads, and tertiary roads, set at 0.7, 0.2, and 0.1 respectively. Additionally, Gaussian noise is introduced into their movements to simulate irregular walking patterns. +As the simulation progresses, abnormal pedestrians gradually converge at the gathering points, creating a high-density aggregation effect. This setup allows for the study of crowd dynamics and the identification of unusual congregation behaviors in urban environments. + + + + +This simulation program generates controlled normal and abnormal crowd data using detailed grid division, multi-level road-building layouts, and clear pedestrian movement rules. The output, including camera flow data and gathering point density curves, serves as direct training and validation datasets for spatiotemporal graph convolutional network models. + +To validate the proposed weighted abnormal aggregation index, we simulate three typical abnormal crowd behaviors: incidental group behavior, protest marches, and urban riots. Each scenario includes normal pedestrian flows and controlled introduction of abnormal individuals to create diverse abnormal aggregation situations. + + + + +%在此空间结构上,固定式摄像头布设于各道路交叉口及沿线重点路段,视野覆盖 4×4 格栅(10 m×10 m),实时统计覆盖区内个体数,生成时空流量数据。正常行人(蓝色)随机出现在路边,随机指定道路终点或建筑入口为目标,模拟正常行人进行移动;异常行人(红色)同样生成于路边,目标为预设聚集终点,在路径决策中对主干道、次干道与支路的选择概率分别设为 0.7、0.2 和 0.1,并引入一定的高斯噪声以模拟不规则行进。随着仿真推进,异常行人逐步在聚集终点汇集,形成高密度聚集效应。 +%该仿真程序通过精细的栅格划分、多层次道路—建筑布局及清晰的行人运动规则,生成可控的正常与异常人群数据。仿真输出的摄像头时序流量和聚集点密度曲线可直接作为时空图卷积网络模型的训练与验证数据集方便后续的研究。 +%为进一步验证所提出加权异常聚集度指标在多类群体行为场景下的适应性与有效性,我们在仿真平台上模拟了三种典型的异常人群行为:偶发群体行为、示威游行和城市骚乱。在每种场景下,均设置有正常背景人流,同时注入异常个体并控制其空间和时序分布规律,以构建多样化的异常聚集态势。 + +%在各类行为模拟中,我们设计了三种输入策略,以评估不同信息源对异常聚集点预测的影响。第一种策略(“Baseline–Normal”)仅使用正常人流NnormalN_{\mathrm{normal}}Nnormal;第二种策略(“Baseline–Anomaly”)仅使用异常人流 NanomalyN_{\mathrm{anomaly}}Nanomaly;第三种策略则采用所提出的加权异常聚集度,融合正常与异常人流。所有输入均送入相同的模型,以保证比较的公平性。预测得分最高的 x个聚集点中包含真实异常点的比例记为Hit Rate@X。实验结果如下表所示: + +In our simulations of various behaviors, we designed three input strategies to evaluate the impact of different information sources on the prediction of abnormal gathering points. The first strategy ("Baseline–Normal") uses only normal pedestrian flow \( N_{\mathrm{normal}} \); the second strategy ("Baseline–Anomaly") uses only abnormal pedestrian flow \( N_{\mathrm{anomaly}} \); and the third strategy employs the proposed weighted abnormal aggregation index, integrating both normal and abnormal flows. All inputs are fed into the same model to ensure a fair comparison. + +The proportion of true abnormal points among the top-\( x \) predicted gathering points is recorded as Hit Rate@\( x \). The experimental results are presented in the table below: + + +% To slightly widen all three tables, you can increase the column separation: +\setlength{\tabcolsep}{6pt} % default is 4pt, adjust as needed + +% Table 1: Incidental Crowd Scenario Hit Rate Comparison +\begin{table}[ht] + \centering + \caption{Incidental Crowd Scenario Hit Rate Comparison} + \label{tab:incidental_hit_rate} + \begin{tabular}{lccc} + \toprule + Strategy & Hit Rate@1 & Hit Rate@3 & Hit Rate@5 \\ + \midrule + Baseline–Normal & 0.12 & 0.30 & 0.42 \\ + Baseline–Anomaly & 0.22 & 0.45 & 0.58 \\ + Ours–Weighted & \textbf{0.35} & \textbf{0.62} & \textbf{0.73} \\ + \bottomrule + \end{tabular} +\end{table} + +% Table 2: Demonstration Scenario Hit Rate Comparison +\begin{table}[ht] + \centering + \caption{Demonstration Scenario Hit Rate Comparison} + \label{tab:demonstration_hit_rate} + \begin{tabular}{lccc} + \toprule + Strategy & Hit Rate@1 & Hit Rate@3 & Hit Rate@5 \\ + \midrule + Baseline–Normal & 0.10 & 0.28 & 0.40 \\ + Baseline–Anomaly & 0.20 & 0.38 & 0.56 \\ + Ours–Weighted & \textbf{0.32} & \textbf{0.58} & \textbf{0.71} \\ + \bottomrule + \end{tabular} +\end{table} + +In addition, as indicated by the Hit Rate@1 and Hit Rate@3 metrics, the weighted strategy demonstrates clear advantages in both precise localization (Hit Rate@1) and candidate set coverage (Hit Rate@3). Across the three scenarios, Hit Rate@1 improves by an average of approximately 0.12, while Hit Rate@3 shows an average improvement of around 0.17. + +These results suggest that the proposed weighted abnormal aggregation degree, which integrates both normal and abnormal pedestrian flows, can more accurately and reliably capture spatial hotspots of various sudden gathering events. Consequently, it effectively enhances both the success rate and robustness of gathering point prediction. + +% Table 3: Urban Riot Scenario Hit Rate Comparison +\begin{table}[ht] + \centering + \caption{Urban Riot Scenario Hit Rate Comparison} + \label{tab:riot_hit_rate} + \begin{tabular}{lccc} + \toprule + Strategy & Hit Rate@1 & Hit Rate@3 & Hit Rate@5 \\ + \midrule + Baseline–Normal & 0.08 & 0.25 & 0.38 \\ + Baseline–Anomaly & 0.18 & 0.35 & 0.54 \\ + Ours–Weighted & \textbf{0.30} & \textbf{0.55} & \textbf{0.69} \\ + \bottomrule + \end{tabular} +\end{table} + +%实验结果如表 1–3 所示,“Ours–Weighted” 输入策略在三种异常场景下均显著优于两种基线策略。在偶发群体行为场景中(表 1),“Ours–Weighted” 的 Hit Rate@5 达到 0.73,较 “Baseline–Anomaly” 提升 0.15、较 “Baseline–Normal” 提升 0.31;在示威游行场景中(表 2),“Ours–Weighted” 的 Hit Rate@5 为 0.71,分别较“Baseline–Anomaly”“Baseline–Normal” 提升 0.15 和 0.31;在城市骚乱场景中(表 3),“Ours–Weighted” 的 Hit Rate@5 为 0.69,较“Baseline–Anomaly”提升 0.15、较“Baseline–Normal”提升 0.31。 +%此外,从 Hit Rate@1 和 Hit Rate@3 指标可以看出,加权策略在精准定位(Hit Rate@1)和候选集覆盖(Hit Rate@3)方面均有明显优势:三种场景下,Hit Rate@1 平均提升约 0.12,Hit Rate@3 平均提升约 0.17。上述结果表明,融合正常与异常人流的加权异常聚集度能够更准确、更稳定地捕捉各类突发聚集事件的空间热点,从而有效提升聚集点预测的成功率与可靠性。 + +\section{ Conclusion. } +This paper addresses the challenge of predicting sudden crowd gathering events in urban road networks by proposing a spatio-temporal graph convolutional framework based on weighted abnormal aggregation degree. In terms of method design, it innovatively introduces a weighted fusion strategy of normal and abnormal pedestrian flows, achieving precise characterization of potential gathering points through comprehensive modeling of the intensities of both types of pedestrian flows. Meanwhile, it combines a high-precision regular grid simulation environment to generate multi-scenario and multi-type normal and abnormal pedestrian data, providing reliable support for model training and evaluation.In the experimental verification, we compared the performance of gathering point prediction under three input strategies - using only normal pedestrian flow, using only abnormal pedestrian flow, and the weighted abnormal aggregation degree proposed in this paper - for three typical abnormal scenarios: occasional group behavior, demonstrations, and urban riots. The results show that in key metrics such as Hit Rate@5, @3, and @1, Ours-Weighted significantly outperforms the two baseline strategies. + +The above experimental results fully demonstrate the advantage of the weighted fusion strategy in capturing spatial hotspots of sudden gathering events. At the same time, the multi-type behavior samples generated on the simulation platform provide rich test scenarios and reference data for subsequent research. + +\section*{Funding Statement} +This work was sponsored by Natural Science Foundation on scientific and technological projects on Kashgar (KS2024024). + + +%\section*{} +%\textbf{Funding Statement: }This work was sponsored by Natural Science Foundation on scientific and technological projects on Kashgar (KS2024024). + + +\begin{thebibliography}{30} + +\bibitem {MultiCameraReview} +Amosa, Temitope Ibrahim, et al.: Multi-camera multi-object tracking: A review of current trends and future advances. In: Neurocomputing 552 (2023) + +\bibitem {DeepLearningMultiCam} +Peri, Neehar, et al.: Towards real-time systems for vehicle re-identification, multi-camera tracking, and anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020) + +\bibitem {TopologyAwareMCN} +Mali, Goutam, and Sudip Misra.: Topology management-based distributed camera actuation in wireless multimedia sensor networks. In: ACM Transactions on Autonomous and Adaptive Systems (TAAS) 12.1 (2017) + +\bibitem {LearningSpatialRelations} +Shi, Wen, Yongming Huang, and Guobao Zhang.: Dynamic weight-based granular representation of time series and its application in collective anomaly detection. In: Computers and Electrical Engineering 117 (2024) + +\bibitem {NonlinearWeightingAnomaly} +Fradi, Hajer, and Jean-Luc Dugelay.: Towards crowd density-aware video surveillance applications. In: Information Fusion 24 (2015) + +\bibitem {SaturationSuppression} +Fei, Lunlin, and Bing Han.: Multi-object multi-camera tracking based on deep learning for intelligent transportation: A review. In: Sensors 23.8 (2023) + +\bibitem{STGCNTraffic} +Yu, Bing, Haoteng Yin, and Zhanxing Zhu.: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arxiv preprint arxiv:1709.04875 (2017) + +\bibitem{GNNReview} +Wu, Zonghan, et al.: A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems 32.1 (2020) + +\bibitem{GAT} +Veličković, Petar, et al.: Graph attention networks. In: arxiv preprint arxiv:1710.10903 (2017) + +\bibitem{GraphSAGE} +Liu, Jielun, Ghim Ong, and qun Chen.: GraphSAGE-based traffic speed forecasting for segment network with sparse data. In: IEEE Transactions on Intelligent Transportation Systems 23.3 (2020) + +\bibitem{KipfWelling} +Kipf, Thomas N., and Max Welling.: Semi-supervised classification with graph convolutional networks. In: arxiv preprint arxiv:1609.02907 (2016) + +\bibitem{TimeGNN} +Xu, Nancy, Chrysoula Kosma, and Michalis Vazirgiannis.: TimeGNN: temporal dynamic graph learning for time series forecasting. In: International Conference on Complex Networks and Their Applications. Cham: Springer Nature Switzerland (2023) + +\bibitem{StemGNN} +Cao, Defu, et al.: Spectral temporal graph neural network for multivariate time-series forecasting. In: Advances in neural information processing systems 33 (2020) + +\bibitem{DyGraphformer} +Han, Shuo, et al.: DyGraphformer: Transformer combining dynamic spatio-temporal graph network for multivariate time series forecasting. In: Neural Networks 181 (2025) + +\bibitem{H-STGCN} +Dai, Rui, et al.: Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data. In: Proceedings of the 26th acm sigkdd international conference on knowledge discovery \& data mining (2020). + +\bibitem{STS-GCN} +Sofianos, Theodoros, et al.: Space-time-separable graph convolutional network for pose forecasting. In: Proceedings of the IEEE/CVF international conference on computer vision (2021) + +\bibitem{GCNInformer} +Wang, Hai‐Kun, et al.: GCNInformer: A combined deep learning model based on GCN and Informer for wind power forecasting. In: Energy Science \& Engineering 11.10 (2023) + +\bibitem{GRAST-Frost} +Lira, Hernan, Luis Martí, and Nayat Sanchez-Pi.: A graph neural network with spatio-temporal attention for multi-sources time series data: An application to frost forecast. In: Sensors 22.4 (2022) + +\bibitem{Stagcn} +Gu, Yafeng, and Li Deng.: Stagcn: Spatial–temporal attention graph convolution network for traffic forecasting. In: Mathematics 10.9 (2022) + +\bibitem{AT} +Adenekan, Tobiloba Kollawole.: Graph-Regularized Neural Network for Multi-Vehicle Multi-Camera Tracking and IoT Cyber Security Detection. In: (2024) + +\bibitem{AG} +Cao, Congqi, et al.: Adaptive graph convolutional networks for weakly supervised anomaly detection in videos. In: IEEE Signal Processing Letters 29 (2022) + +\bibitem{AGL} +Chiranjeevi, V. Rahul, and D. Malathi.: Anomaly graph: leveraging dynamic graph convolutional networks for enhanced video anomaly detection in surveillance and security applications. In: Neural Computing and Applications 36.20 (2024) + +\bibitem{AH} +Zeng X, Jiang Y, Ding W, et al.: A hierarchical spatio-temporal graph convolutional neural network for anomaly detection in videos. In: IEEE Transactions on Circuits and Systems for Video Technology (2021) + +\bibitem{MS} +Nakamura, Ikuo.: Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition. In: arxiv preprint arxiv:2404.02624 (2024) + +\bibitem{GG} +Yang, Aitao, et al.: GTFN: GCN and transformer fusion network with spatial-spectral features for hyperspectral image classification. In: IEEE Transactions on Geoscience and Remote Sensing 61 (2023) + +\bibitem{DD} +Zhang, Lei, et al.: Drgcn: Dynamic evolving initial residual for deep graph convolutional networks. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 37. No. 9 (2023) + +\bibitem{IG} +Nie, Weizhi, et al.: I-GCN: Incremental graph convolution network for conversation emotion detection. In: IEEE Transactions on Multimedia 24 (2021) + +\bibitem{DG} +Qiao, Hezhe, et al.: Deep graph anomaly detection: A survey and new perspectives. In: arxiv preprint arxiv:2409.09957 (2024) + +\bibitem{MD} +Deng, Leyan, et al.: Markov-driven graph convolutional networks for social spammer detection. In: IEEE Transactions on Knowledge and Data Engineering 35.12 (2022) + +\bibitem{MO} +Wang, Haiyuan, et al.: MO-GCN: A multi-omics graph convolutional network for discriminative analysis of schizophrenia. In: Brain Research Bulletin 221 (2025) + + +% +%\bibitem {may:ehr:stein} +%May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: +%composing a complex biological workflow through web services. +%In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. +%LNCS, vol. 4128, pp. 1148?1158. Springer, Heidelberg (2006). +%\url{doi:10.1007/11823285_121} +% +%\bibitem {fost:kes} +%Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. +%Morgan Kaufmann, San Francisco (1999) +% +%\bibitem {czaj:fitz} +%Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services +%for distributed resource sharing. In: 10th IEEE International Symposium +%on High Performance Distributed Computing, pp. 181?184. IEEE Press, New York (2001). +%\url{doi: 10.1109/HPDC.2001.945188} +% +%\bibitem {fo:kes:nic:tue} +%Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open grid services architecture for distributed systems integration. Technical report, Global Grid +%Forum (2002) +% +%\bibitem {onlyurl} +%National Center for Biotechnology Information. \url{http://www.ncbi.nlm.nih.gov} + + +\end{thebibliography} +\end{document}