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Abstract— Simultaneous Localization and Mapping (SLAM)
is one of the most essential techniques in many real-world
robotic applications. The assumption of static environments is
common in most SLAM algorithms, which however, is not the
case for most applications. Recent work on semantic SLAM
aims to understand the objects in an environment and distin-
guish dynamic information from a scene context by performing
image-based segmentation. However, the segmentation results
are often imperfect or incomplete, which can subsequently
reduce the quality of mapping and the accuracy of localization.
In this paper, we present a robust multi-modal semantic
framework to solve the SLAM problem in complex and highly
dynamic environments. We propose to learn a more powerful
object feature representation and deploy the mechanism of
looking and thinking twice to the backbone network, which
leads to a better recognition result to our baseline instance
segmentation model. Moreover, both geometric-only clustering
and visual semantic information are combined to reduce the
effect of segmentation error due to small-scale objects, occlusion
and motion blur. Thorough experiments have been conducted to
evaluate the performance of the proposed method. The results
show that our method can precisely identify dynamic objects
under recognition imperfection and motion blur. Moreover, the
proposed SLAM framework is able to efficiently build a static
dense map at a processing rate of more than 10 Hz, which can
be implemented in many practical applications. Both training
data and the proposed method is open sourced1.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is one of
the most significant capabilities in many robot applications
such as self-driving cars, unmanned aerial vehicles, etc.
Over the past few decades, SLAM algorithms have been
extensively studied in both Visual SLAM such as ORB-
SLAM [1] and LiDAR-based SLAM such as LOAM [2]
and LeGO-LOAM [3]. Unfortunately, many existing SLAM
algorithms assume the environment to be static, and cannot
handle dynamic environments well. The localization is often
achieved via visual or geometric features such as feature
points, lines and planes without including semantic infor-
mation to represent the surrounding environment, which can
only work well under static environments. However, the real-
world is generally complex and dynamic. In the presence of
moving objects, pose estimation might suffer from drifting,
which may cause the system failure if there are wrong
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Fig. 1: System overview of the proposed multi-modal se-
mantic SLAM. Compared to traditional semantic SLAM,
we propose to use multi-modal method to improve the
efficiency and accuracy of the existing SLAM methods in the
complex and dynamic environment. Our method significantly
reduces the localization drifts caused by dynamic objects and
performs dense semantic mapping in real time.

correspondences or insufficient matching features [4]. The
presence of dynamic objects can greatly degrade the accuracy
of localization and the reliability of the mapping during the
SLAM process.

Advancements in deep learning have enabled the develop-
ments of various instance segmentation networks based on
2D images [5]–[6]. Most existing semantic SLAMs leverage
the success of deep learning-based image segmentation, e.g.,
dynamic-SLAM [7] and DS-SLAM [8]. However, the seg-
mentation results are not ideal under dynamic environments.
Various factors such as small-scale objects, objects under
occlusion and motion blur contribute to challenges in 2D
instance segmentation. For example, the object is partially
recognized under motion blur or when it is near to the border
of the image. These can degrade the accuracy of localization
and the reliability of the mapping. Some recent works target
to perform deep learning on 3D point clouds to achieve
semantic recognition [9]–[10]. However, 3D point cloud
instance segmentation does not perform as well as its 2D
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counterpart due to its smaller scale of training data and high
computational cost. There are several reasons: 1) 3D point
cloud instance segmentation such as PointGroup takes a long
computation time (491ms) [11]; 2) it is much less efficient to
label a point cloud since the geometric information is not as
straightforward as the visual information; 3) it is inevitable
to change the viewpoint in order to label a point cloud [12],
which increases the labeling time.

In this paper, we propose a robust and computationally
efficient multi-modal semantic SLAM framework to tackle
the limitation of existing SLAM methods in dynamic en-
vironments. We modify the existing backbone network to
learn a more powerful object feature representation and
deploy the mechanism of looking and thinking twice to the
backbone network, which leads to a better recognition result
to our baseline instance segmentation model. Moreover, we
combine the geometric-only clustering and visual semantic
information to reduce the effect of motion blur. Eventually
the multi-modal semantic recognition is integrated into the
SLAM framework which is able to provide real-time local-
ization in different dynamic environments. The experiment
results show that the segmentation errors due to misclassifi-
cation, small-scale object and occlusion can be well-solved
with our proposed method. The main contributions of this
paper are summarized as follows:

• We propose a robust and fast multi-modal semantic
SLAM framework that targets to solve the SLAM prob-
lem in complex and dynamic environments. Specifically,
we combine the geometric-only clustering and visual se-
mantic information to reduce the effect of segmentation
error due to small-scale objects, occlusion and motion
blur.

• We propose to learn a more powerful object feature
representation and deploy the mechanism of looking and
thinking twice to the backbone network, which leads
to a better recognition result to our baseline instance
segmentation model.

• A thorough evaluation on the proposed method is pre-
sented. The results show that our method is able to
provide reliable localization and a semantic dense map.

The rest of the paper is organized as follows: Section II
presents an overview of the related works regarding the three
main SLAM methods in dynamic environments. Section III
describes the details of the proposed SLAM framework.
Section IV provides quantitative and qualitative experimental
results in dynamic environments. Section V concludes this
paper.

II. RELATED WORK

In this section, we present the existing works that address
SLAM problems in dynamic environments. The existing
dynamic SLAM can be categorized into three main methods:
feature consistency verification method, deep learning-based
method and multi-modal-based method.

A. Feature Consistency Verification

Dai et al. [13] presents a segmentation method using the
correlation between points to distinguish moving objects
from the stationary scene, which has a low computational
requirement. Lee et al. [14] introduces a real-time depth
edge-based RGB-D SLAM system to deal with a dynamic
environment. Static weighting method is proposed to mea-
sure the likelihood of the edge point being part of the
static environment and is further used for the registration of
the frame-to-keyframe point cloud. These methods generally
can achieve real-time implementation without increasing the
computational complexity. Additionally, they need no prior
knowledge about the dynamic objects. However, they are
unable to continuously track potential dynamic objects, e.g.,
a person that stops at a location temporarily between moves
is considered as a static object in their work.

B. Deep Learning-Based Dynamic SLAM

Deep learning-based dynamic SLAM usually performs
better than feature consistency verification as it provides
conceptual knowledge of the surrounding environment to
perform the SLAM tasks. Xun et al. [15] proposes a feature-
based visual SLAM algorithm based on ORB-SLAM2,
where a front-end semantic segmentation network is in-
troduced to filter out dynamic feature points and subse-
quently fine-tune the camera pose estimation, thus making
the tracking algorithm more robust. Reference [16] combines
a semantic segmentation network with a moving consistency
check method to reduce the impact of dynamic objects and
generate a dense semantic octree map. A visual SLAM
system proposed by [17] develops a dynamic object detector
with multi-view geometry and background inpainting, which
aims to estimate a static map and reuses it in long term
applications. However, Mask R-CNN is considered as com-
putationally intensive; as a result, the whole framework can
only be performed offline.

Deep learning-based LiDAR SLAM in dynamic envi-
ronments are relatively less popular than visual SLAM.
Reference [18] integrates semantic information by using a
fully convolutional neural network to embed these labels
into a dense surfel-based map representation. However, the
adopted segmentation network is based on 3D point clouds,
which is less effective as compared to 2D segmentation net-
works. Reference [19] develops a laser-inertial odometry and
mapping method which consists of four sequential modules
to perform a real-time and robust pose estimation for large
scale high-way environments. Reference [20] presents a dy-
namic objects-free LOAM system by overlapping segmented
images into LiDAR scans. Although deep learning-based
methods can effectively alleviate the impact of dynamic ob-
jects on the SLAM performance, they are normally difficult
to operate in real-time due to the implementation of deep-
learning neural networks which possess high computational
complexity.
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Fig. 2: Flow chart of the proposed method. Our system consists of four modules: (a) semantic fusion module; (b) semantic
learning module; (c) localization module; (d) global optimization and mapping module.

C. Multi-modal-based Dynamic SLAM
Multi-modal approaches are also explored to deal with

dynamic environments. Reference [21] introduces a multi-
modal sensor-based semantic mapping algorithm to improve
the semantic 3D map in large-scale as well as in featureless
environments. Although this work is similar to our proposed
method, it incurs higher computational cost as compared to
our proposed method. A LiDAR-camera SLAM system [22]
is presented by applying a sparse subspace clustering-based
motion segmentation method to build a static map in dynamic
environments. Reference [23] incorporates the information of
a monocular camera and a laser range finder to remove the
feature outliers related to dynamic objects. However, both
reference [22] and [23] can only work well in low dynamic
environments.

III. METHODOLOGY
In this section, the proposed method will be discussed

in detail. Fig. 2 illustrates an overview of our framework.
It is mainly composed of four modules, namely instance
segmentation module, multi-modal fusion module, localiza-
tion module and global optimization & mapping module.
Instance segmentation module uses a real-time instance seg-
mentation network to extract the semantic information of
all potential dynamic objects that are present in an RGB
image. The convolution neural network is trained offline and
is later implemented online to achieve real-time performance.
Concurrently, the multi-modal fusion module transfers rel-
evant semantic data to LiDAR through sensor fusion and
subsequently uses the multi-modal information to further
strengthen the segmentation results. The static information
is used in the localization module to find the robot pose,
while both static information and dynamic information are
utilized in the global optimization and mapping module to
build a 3D dense semantic map.

A. Instance Segmentation & Semantic Learning
A recent 2D instance segmentation framework [24] is

employed in our work due to its ability to outperform

other state-of-the-art instance segmentation models, both in
segmentation accuracy and inference speed. Given an input
image I , our adopted instance segmentation network predicts
a set of {C i,M i}n

i=1, where C i is a class label and M i is a
binary mask, n is the number of instances in the image.
The image is spatially separated into N × N grid cells. If
the center of an object falls into a grid cell, that grid cell
is responsible for predicting the semantic category C ij and
semantic mask M ij of the object in category branch Bc and
mask branch Pm respectively:

Bc(I, θc) : I → {C ij ∈ Rλ | i, j = 0, 1, ..., N}, (1a)

Pm(I, θm) : I → {M ij ∈ Rφ | i, j = 0, 1, ..., N}, (1b)

where θc and θm are the parameters of category branch Bc
and mask branch Pm respectively. λ is the number of classes.
φ is the total number of grid cells. The category branch
and mask branch are implemented with a Fully Connected
Network (FCN). C ij has a total of λ elements. Each element
of C ij indicates the class probability for each object instance
at grid cell (i, j). In parallel with the category branch, M ij
has a total of N 2 elements [24]. Each positive grid cell (i, j)
will generate the corresponding instance mask in kth element,
where kth = i ·N + j. Since our proposed SLAM system is
intentionally designed for real-world robotics applications,
computational cost for performing instance segmentation
is our primary concern. Therefore, we use a light-weight
version of SOLOv2 with lower accuracy to achieve real-
time instance segmentation. To improve the segmentation
accuracy, several methods have been implemented to build a
more effective and robust feature representation discriminator
in the backbone network. Firstly, we modify our backbone
architecture from the original Feature Pyramid Network
(FPN) to Recursive Feature Pyramid Network (RFP) [25].
Theoretically, RFP instills the idea of looking twice or
more by integrating additional feedback from FPN into
bottom-up backbone layers. This recursively strengthens the
existing FPN and provides increasingly stronger feature
representations. By offsetting richer information with small
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Fig. 3: Comparison of the original SOLOv2 with the proposed method. Our segmentation results achieve higher accuracy:
In (1b), our method can preserve a more detailed mask for the rider on a motorcycle compared to the SOLOv2 result in
(1a); In (2b), we can handle the occluded object while it is not detected in (2a); In (3b), our method can accurately predict
the mask for a handbag compared to (3a).

receptive field in the lower-level feature maps, we are able
to improve the segmentation performance on small objects.
Meanwhile, the ability of RFP to adaptively strengthen and
suppress neuron activation enables the instance segmentation
network to handle occluded objects more efficiently. On
the other hand, we replace the convolutional layers in the
backbone architecture with Switchable Atrous Convolution
(SAC). SAC operates as a soft switch function, which is
used to collect the outputs of convolutional computation with
different atrous rates. Therefore, we are able to learn the
optimal coefficient from SAC and can adaptively select the
size of receptive field. This allows SOLOv2 to efficiently
extract important spatial information.

The outputs are pixel-wise instance masks for each dy-
namic object, as well as their corresponding bounding box
and class type. To better integrate the dynamic information to
the SLAM algorithm, the output binary mask is transformed
into a single image containing all pixel-wise instance masks
in the scene. The pixel with the mask falling onto it is
considered as “dynamic state” and otherwise is considered as
“static state”. The binary mask is then applied to the semantic
fusion module to generate a 3D dynamic mask.

B. Multi-Modal Fusion

1) Motion Blur Compensation: The instance segmenta-
tion has achieved good performance on the public dataset
such as the COCO dataset and the Object365 dataset [24]–
[26]. However, in practice the target may be partially rec-
ognized or incomplete due to the motion blur on moving
objects, resulting in ambiguous boundaries of a moving
object. Moreover, motion blur effect is further enlarged
when projecting the 2D pixel-wise semantic mask for a
dynamic object to 3D semantic label, leading to point mis-
alignment and inconsistency of feature point extraction. In
the experiments, we find that the ambitious boundaries of

dynamic targets will degrade the localization accuracy and
produce noise when performing a mapping task. Therefore,
we firstly implement morphological dilation to convolute
the 2D pixel-wise mask image with a structuring element,
for gradually expanding the boundaries of regions for the
dynamic objects. The morphological dilation result marks
the ambiguous boundaries around the dynamic objects. We
take the both dynamic objects and their boundaries as the
dynamic information, which will be further refined in the
multi-modal fusion section.

2) Geometric Clustering & Semantic Fusion: Compensa-
tion via connectivity analysis on Euclidean space [27] is also
implemented in our work. Instance segmentation network has
excellent recognition capability in most practical situations,
however motion blur limits the segmentation performance
due to ambiguous pixels between regions, leading to undesir-
able segmentation error. Therefore, we combine both point
cloud clustering results and segmentation results to better
refine the dynamic objects. In particular, we perform the
connectivity analysis on the geometry information and merge
with vision-based segmentation results.

A raw LiDAR scan often contains tens of thousands of
points. To increase the efficiency of our work, 3D point
cloud is firstly downsized to reduce the scale of data and
used as the input for point cloud clustering. Then the
instance segmentation results are projected to the point cloud
coordinate to label each point. The point cloud cluster will be
considered as a dynamic cluster when most points (90%) are
dynamic labelled points. The static point will be re-labeled to
the dynamic tag when it is close to a dynamic point cluster.
And the dynamic point will be re-labelled when there is no
dynamic points cluster nearby.



C. Localization & Pose Estimation
1) Feature Extraction: After applying multi-modal dy-

namic segmentation, the point cloud is divided into a dy-
namic point cloud PD and a static point cloud PS . The
static point cloud is subsequently used for the localization
and mapping module based on our previous work [28].
Compared to the existing SLAM approach such as LOAM
[2], the proposed framework in [28] is able to support real-
time performance at 30 Hz which is a few times faster. It
is also resistant to illumination variation compared to visual
SLAMs such as ORB-SLAM [1] and VINS-MONO [29].
For each static point pk ∈ PS , we can search for its nearby
static points set Sk by radius search in Euclidean space. Let
|S| be the cardinality of a set S, the local smoothness is thus
defined by:

σk =
1

|Sk|
·
∑

pi∈Sk

(||pk|| − ||pi||). (2)

The edge features are defined by the points with large σk
and the planar features are defined by the points with small
σk.

2) Data Association: The final robot pose is calculated
by minimizing the point-to-edge and point-to-plane distance.
For an edge feature point pE ∈ PE , it can be transformed
into local map coordinate by p̂E = T·pE , where T ∈ SE(3)
is the current pose. We can search for 2 nearest edge features
p1
E and p2

E from the local edge feature map and the point-
to-edge residual is defined by [28]:

fE(p̂E) =
||(p̂E − p1

E)× (p̂E − p2
E)||

||p1
E − p2

E ||
, (3)

where symbol × is the cross product. Similarly, given a
planar feature point pL ∈ PL and its transformed point
p̂L = T ·pL, we can search for 3 nearest points p1

L, p2
L, and

p3
L from the local planar map. The point-to-plane residual is

defined by:

fL(p̂L) = (p̂L − p1
L)
T · (p1

L − p2
L)× (p1

L − p3
L)

||(p1
L − p2

L)× (p1
L − p3

L)||
. (4)

3) Pose Estimation: The final robot pose is calculated
by minimizing the sum of point-to-plane and point-to-edge
residuals:

T∗ = argmin
T

∑
pE∈PE

fE(p̂E) +
∑

pL∈PL

fL(p̂L). (5)

This non-linear optimization problem can be solved by the
Gauss-Newton method and we can derive an optimal robot
pose based on the static information.

4) Feature Map Update & Key Frame Selection: Once
the optimal pose is derived, the features are updated to the
local edge map and local plane map respectively, which
will be used for the data association on the next frame.
Note that to build and update a global dense map is often
very computational costly. Hence, the global static map is
updated based on the keyframe. A key frame is selected when
the translational change of the robot pose is greater than a
predefined translation threshold, or the rotational change of
the robot pose is greater than a predefined rotation threshold.

（a） （b） （c） （d） （e）

（f）

Fig. 4: Different types of AGVs used in our warehouse
environment: (a) the grabbing AGV with a robot arm; (b)
folklift AGV; (c) scanning AGV; (d) the Pioneer robot; (e)
the transportation AGV with conveyor belt; (f) warehouse
environment;

D. Global Map Building

The semantic map is separated into a static map and
a dynamic map. Note that the visual information given
previously is also used to construct the colored dense static
map. Specifically, the visual information can be achieved
by re-projecting 3D points into the image plane. After each
update, the map is down-sampled by using a 3D voxelized
grid approach [30] in order to prevent memory overflow.
The dynamic map is built by PD and it is used to reveal the
dynamic objects. The dynamic information can be used for
high-level tasks such as motion planning.

IV. EXPERIMENT EVALUATION

In this section, experimental results will be presented to
demonstrate the effectiveness of our proposed method. First,
our experimental setup will be discussed in detail. Second,
we elaborate how we acquire the data of potential moving
objects in a warehouse environment. Third, we evaluate the
segmentation performance on our adopted instance segmen-
tation model. Subsequently, we explain how we perform the
dense mapping and dynamic tracking. Lastly, we evaluate
the performance of our proposed method regarding the
localization drifts under dynamic environments.

A. Experimental Setup

For our experimental setup, the Robot Operating System
(ROS) is utilized as the interface for the integration of
the semantic learning module and the SLAM algorithm, as
shown in Fig. 1. Intel RealSense LiDAR camera L515 is
used to capture RGB and point cloud at a fixed frame rate.
All the experiments are performed on a computer with an
Intel i7 CPU and an Nvidia GeForce RTX 2080 Ti GPU.



（a） （b）

Fig. 5: Static map creation and final semantic mapping result: (a) static map built by the proposed SLAM framework; (b)
final semantic mapping result. The instance segmentation is shown on the left. Human operators are labeled by red bounding
boxes and AGVs are labeled by green bounding boxes.

B. Data Acquisition

Humans are often considered as dynamic objects in many
scenarios such as autonomous driving and smart warehouse
logistics. Therefore we choose 5,000 human images from
the COCO dataset. In the experiment, the proposed method
is evaluated in the warehouse environment as shown in
Fig. 4. Other than considering humans as dynamic objects,
an advanced factory requires human-to-robot and robot-to-
robot collaboration, so that the Automated Guided Vehicles
(AGVs) are also potential dynamic objects. Hence a total
of 3,000 AGV images are collected to train the instance
segmentation network and some of the AGVs are shown in
Fig. 4.

In order to solve the small dataset problem, we implement
the copy-paste augmentation method proposed by [31] to
enhance the generalization ability of the network and directly
improve the robustness of the network. To be specific, this
method generates new images through applying random
scale jittering on two random training datasets and randomly
chooses a subset of object instances from one image to paste
onto the other image.

C. Evaluation on Instance Segmentation Performance

In this part, we will evaluate the segmentation performance
on the COCO dataset with regards to the segmentation loss
and mean Average Precision (mAP). The purpose of this
evaluation is to compare our adopted instance segmentation
network, SOLOv2, with the proposed method. The results
are illustrated in Table I. Our adopted instance segmenta-

Model Segmentation Mean Inference
Loss AP (%) Time (ms)

SOLOv2 0.52 38.8 54.0
SOLOv2 + RFP 0.36 41.2 64.0
SOLOv2 + SAC 0.39 39.8 59.0

SOLOv2+DetectoRS(Ours) 0.29 43.4 71.0

TABLE I: Performance comparison of instance segmenta-
tion.

tion network, SOLOv2 is built based on the MMDetection
2.0 [32], an open-source object detection toolbox based
on PyTorch. We trained SOLOv2 on the COCO dataset
which consists of 81 classes. We choose ResNet-50 as our
backbone architecture since this configuration satisfies our
requirements for the real-world robotics applications. Instead
of training the network from scratch, we make use of the
parameters of ResNet-50 that are pre-trained on ImageNet.
For fair comparison, all the models are trained under the
same configurations, they are trained with the synchronized
stochastic gradient descent with a total of 8 images per mini-
batch for 36 epochs.

For SOLOv2 with Recursive Feature Pyramid (RFP), we
modify our backbone architecture from Feature Pyramid
Network (FPN) to RFP network. In this experiment, we only
set the number of stages to be 2, allowing SOLOv2 to look
at the image twice. As illustrated in Table I, implementation
of RFP network brings a significant improvement on the
segmentation performance. On the other hand, we replace
all 3x3 convolutional layers in the backbone network with
Switchable Atrous Convolution (SAC), which increases the
segmentation accuracy by 2.3%. By implementing both SAC
and RFP network to SOLOv2, the segmentation performance
is further improved by 5.9% with only 17ms increase in
inference time. Overall, SOLOv2 learns to look at the image
twice with adaptive receptive fields, therefore it is able to
highlight important semantic information for the instance
segmentation network. The segmentation result is further
visualized in Fig. 3.

Methods ATDE MTDE
(cm) (cm)

W/O Semantic Recognition 4.834 1.877
Vision-based Semantic Recognition 1.273 0.667
Multi-Modal Recognition (Ours) 0.875 0.502

TABLE II: Ablation study of localization drifts under dy-
namic environments.
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D. Dense Mapping and Dynamic Tracking

To evaluate the performance of our multi-modal semantic
SLAM in dynamic environments, the proposed method is
implemented on warehouse AGVs which are shown in Fig. 4.
In a smart manufacturing factory, both human operators and
different types of AGVs (e.g., folklift AGVs, transportation
AGVs and robot-arm equipped AGVs) are supposed to work
in a collaborative manner. Therefore, the capability of each
AGV to localize itself under moving human operators and
other AGVs is the essential technology towards industry 4.0.
In many warehouse environments, the rest of objects such
as operating machines or tables can be taken as a static
environment. Hence we only consider humans and AGVs
as dynamic objects in order to reduce the computational
cost. In the experiment, an AGV is manually controlled
to move around and build the warehouse environment map
simultaneously, while the human operators are walking fre-
quently in the warehouse. The localization result is shown
in Fig. 6, where we compare the results of ground truth, the
proposed SLAM method and original SLAM without our
filtering approach. It can be seen that when the dynamic
object appears (in blue), the proposed multi-modal semantic
SLAM is more robust and stable than traditional SLAM.
The mapping results are shown in Fig. 5. The proposed
method is able to efficiently identify the potential dynamic
objects and separate them from the static map. Although the
human operators are walking frequently in front of the robot,
they are totally removed from the static map. All potential
dynamic objects are enclosed by bounding boxes and are
added into a final semantic map to visualize the status of
each object in real time, where the moving human is colored
in red and the AGVs are colored in green. Our method is
able to identify and locate multiple targets in the complex
dynamic environment.

（a）

（b）

（c）

（d）

Fig. 7: Ablation study of localization drifts. (a) original
image view; (b) the visual semantic recognition result based
on the proposed method; (c) Localization drifts observed due
to the moving objects. The localization drifts are highlighted
in red circle.

E. Ablation Study of Localization Drifts

To further evaluate the performance of localization under
dynamic profiles, we compare the localization drifts of differ-
ent dynamic filtering approaches. Firstly, we keep the robot
still and let a human operator walk frequently in front of the
robot. The localization drifts are recorded in order to evaluate
the performance under dynamic objects. Specifically, we
calculate the Average Translational Drifts Error (ATDE) and
Maximum Translational Drifts Error (MTDE) to verify the
localization, where the ATDE is the average translational
error of each frame and MTDE is the maximum translational
drift caused by the walking human. The results are shown
in Table II. We firstly remove the semantic recognition
module from SLAM and evaluate the performance. Then
we use the visual semantic recognition (SOLOv2) to re-
move the dynamic information. The results are compared
with the proposed semantic multi-modal SLAM. It can be
seen that, compared to the original SLAM, the proposed
method significantly reduces the localization drift. Compared
to vision-only-based filtering methods, the proposed multi-
modal semantic SLAM is more stable and accurate under the
presence of dynamic objects.

V. CONCLUSION

In this paper, we have presented a semantic multi-modal
framework to tackle the SLAM problem in dynamic en-
vironments, which is able to effectively reduce the impact
of dynamic objects in complex dynamic environments. Our
approach aims to provide a modular pipeline to allow real-
world applications in dynamic environments. Meanwhile, a
3D dense stationary map is constructed with the removal
of dynamic information. To verify the effectiveness of the
proposed method in a dynamic complex environment, our
method is evaluated on warehouse AGVs used for smart
manufacturing. The results show that our proposed method
can significantly improve the existing semantic SLAM algo-
rithm in terms of robustness and accuracy.
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