add new notes
This commit is contained in:
		
							parent
							
								
									5ef8c9bd25
								
							
						
					
					
						commit
						6d48954367
					
				
							
								
								
									
										8
									
								
								Docs/2024-10-25/.idea/.gitignore
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								Docs/2024-10-25/.idea/.gitignore
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @ -0,0 +1,8 @@ | ||||
| # Default ignored files | ||||
| /shelf/ | ||||
| /workspace.xml | ||||
| # Editor-based HTTP Client requests | ||||
| /httpRequests/ | ||||
| # Datasource local storage ignored files | ||||
| /dataSources/ | ||||
| /dataSources.local.xml | ||||
							
								
								
									
										24
									
								
								Docs/2024-10-25/.idea/inspectionProfiles/Project_Default.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								Docs/2024-10-25/.idea/inspectionProfiles/Project_Default.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							| @ -0,0 +1,24 @@ | ||||
| <component name="InspectionProjectProfileManager"> | ||||
|   <profile version="1.0"> | ||||
|     <option name="myName" value="Project Default" /> | ||||
|     <inspection_tool class="Eslint" enabled="true" level="WARNING" enabled_by_default="true" /> | ||||
|     <inspection_tool class="PyCompatibilityInspection" enabled="true" level="WARNING" enabled_by_default="true"> | ||||
|       <option name="ourVersions"> | ||||
|         <value> | ||||
|           <list size="2"> | ||||
|             <item index="0" class="java.lang.String" itemvalue="2.7" /> | ||||
|             <item index="1" class="java.lang.String" itemvalue="3.11" /> | ||||
|           </list> | ||||
|         </value> | ||||
|       </option> | ||||
|     </inspection_tool> | ||||
|     <inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true"> | ||||
|       <option name="ignoredErrors"> | ||||
|         <list> | ||||
|           <option value="N803" /> | ||||
|           <option value="N806" /> | ||||
|         </list> | ||||
|       </option> | ||||
|     </inspection_tool> | ||||
|   </profile> | ||||
| </component> | ||||
							
								
								
									
										6
									
								
								Docs/2024-10-25/.idea/inspectionProfiles/profiles_settings.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								Docs/2024-10-25/.idea/inspectionProfiles/profiles_settings.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| <component name="InspectionProjectProfileManager"> | ||||
|   <settings> | ||||
|     <option name="USE_PROJECT_PROFILE" value="false" /> | ||||
|     <version value="1.0" /> | ||||
|   </settings> | ||||
| </component> | ||||
							
								
								
									
										7
									
								
								Docs/2024-10-25/.idea/misc.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								Docs/2024-10-25/.idea/misc.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							| @ -0,0 +1,7 @@ | ||||
| <?xml version="1.0" encoding="UTF-8"?> | ||||
| <project version="4"> | ||||
|   <component name="Black"> | ||||
|     <option name="sdkName" value="Python 3.9" /> | ||||
|   </component> | ||||
|   <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" /> | ||||
| </project> | ||||
							
								
								
									
										8
									
								
								Docs/2024-10-25/.idea/modules.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								Docs/2024-10-25/.idea/modules.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							| @ -0,0 +1,8 @@ | ||||
| <?xml version="1.0" encoding="UTF-8"?> | ||||
| <project version="4"> | ||||
|   <component name="ProjectModuleManager"> | ||||
|     <modules> | ||||
|       <module fileurl="file://$PROJECT_DIR$/.idea/2024-10-25.iml" filepath="$PROJECT_DIR$/.idea/2024-10-25.iml" /> | ||||
|     </modules> | ||||
|   </component> | ||||
| </project> | ||||
							
								
								
									
										6
									
								
								Docs/2024-10-25/.idea/vcs.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								Docs/2024-10-25/.idea/vcs.xml
									
									
									
										generated
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| <?xml version="1.0" encoding="UTF-8"?> | ||||
| <project version="4"> | ||||
|   <component name="VcsDirectoryMappings"> | ||||
|     <mapping directory="$PROJECT_DIR$/../.." vcs="Git" /> | ||||
|   </component> | ||||
| </project> | ||||
							
								
								
									
										805
									
								
								Docs/2024-11-15/2024CVPRPaper.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										805
									
								
								Docs/2024-11-15/2024CVPRPaper.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,805 @@ | ||||
| # CVPR2024|底层视觉相关论文汇总 | ||||
| CVPR2024底层视觉(Low-Level Vision)相关的论文和代码,包括超分辨率,图像去雨,图像去雾,去模糊,去噪,图像恢复,图像增强,图像去摩尔纹,图像修复,图像质量评价,插帧,图像/视频压缩等任务,具体如下。 | ||||
| 
 | ||||
|     https://zhuanlan.zhihu.com/p/684196283 | ||||
| 
 | ||||
|     CVPR2024官网:https://cvpr.thecvf.com/Conferences/2024 | ||||
|      | ||||
|     CVPR接收论文列表:https://cvpr.thecvf.com/Conferences/2024/AcceptedPapers | ||||
|      | ||||
|     CVPR完整论文库:https://openaccess.thecvf.com/CVPR2024 | ||||
|      | ||||
|     开会时间:2024年6月17日-6月21日 | ||||
|     论文接收公布时间:2024年2月27日 | ||||
| 
 | ||||
| # 相关方法概览 | ||||
|     1.超分辨率(Super-Resolution) | ||||
|     2.图像去雨(Image Deraining) | ||||
|     3.图像去雾(Image Dehazing) | ||||
|     4.去模糊(Deblurring) | ||||
|     5.去噪(Denoising) | ||||
|     6.图像恢复(Image Restoration) | ||||
|     7.图像增强(Image Enhancement) | ||||
|     8.图像修复(Inpainting) | ||||
|     9.高动态范围成像(HDR Imaging) | ||||
|     10.图像质量评价(Image Quality Assessment) | ||||
|     11.插帧(Frame Interpolation) | ||||
|     12.视频/图像压缩(Video/Image Compression) | ||||
|     13.压缩图像质量增强(Compressed Image Quality Enhancement) | ||||
|     14.图像去反光(Image Reflection Removal) | ||||
|     15.图像去阴影(Image Shadow Removal) | ||||
|     16.图像上色(Image Colorization) | ||||
|     17.图像和谐化(Image Harmonization) | ||||
|     18.视频稳相(Video Stabilization) | ||||
|     19.图像融合(Image Fusion) | ||||
|     20.其他任务(Others) | ||||
| 
 | ||||
| ## 1.超分辨率(Super-Resolution) | ||||
| **AdaBM: On-the-Fly Adaptive Bit Mapping for Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2404.03296 | ||||
| * Code: https://github.com/Cheeun/AdaBM | ||||
| 
 | ||||
| **A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2404.15620 | ||||
| * Code: https://github.com/XYLGroup/DKP | ||||
| 
 | ||||
| **APISR: Anime Production Inspired Real-World Anime Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2403.01598 | ||||
| * Code: https://github.com/Kiteretsu77/APISR | ||||
| 
 | ||||
| **Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder** | ||||
| * Paper: https://arxiv.org/abs/2403.10255v1 | ||||
| * Code: https://github.com/zhenshij/arbitrary-scale-diffusion | ||||
| 
 | ||||
| **Beyond Image Super-Resolution for Image Recognition with Task-Driven Perceptual Loss** | ||||
| * Paper: https://arxiv.org/abs/2404.01692 | ||||
| * Code: https://github.com/JaehaKim97/SR4IR | ||||
| 
 | ||||
| **Bilateral Event Mining and Complementary for Event Stream Super-Resolution** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Huang_Bilateral_Event_Mining_and_Complementary_for_Event_Stream_Super-Resolution_CVPR_2024_paper.html | ||||
| * Code: https://github.com/Lqm26/BMCNet-ESR | ||||
| 
 | ||||
| **Boosting Flow-based Generative Super-Resolution Models via Learned Prior** | ||||
| * Paper: https://arxiv.org/abs/2403.10988 | ||||
| * Code: https://github.com/liyuantsao/FlowSR-LP | ||||
| 
 | ||||
| **Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model** | ||||
| * Paper: https://arxiv.org/abs/2403.17460 | ||||
| * Code: https://github.com/dongrunmin/RefDiff | ||||
| 
 | ||||
| **CAMixerSR: Only Details Need More “Attention”** | ||||
| * Paper: https://arxiv.org/abs/2402.19289 | ||||
| * Code: https://github.com/icandle/CAMixerSR | ||||
| 
 | ||||
| **CFAT: Unleashing Triangular Windows for Image Super-resolution** | ||||
| * Paper: https://arxiv.org/abs/2403.16143 | ||||
| * Code: https://github.com/rayabhisek123/CFAT | ||||
| 
 | ||||
| **Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Fu_Continuous_Optical_Zooming_A_Benchmark_for_Arbitrary-Scale_Image_Super-Resolution_in_CVPR_2024_paper.html | ||||
| * Code: https://github.com/pf0607/COZ | ||||
| 
 | ||||
| **CoSeR: Bridging Image and Language for Cognitive Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2311.16512 | ||||
| * Code: https://github.com/VINHYU/CoSeR | ||||
| 
 | ||||
| **CDFormer: When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2405.07648 | ||||
| * Code: https://github.com/I2-Multimedia-Lab/CDFormer | ||||
| 
 | ||||
| **CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data** | ||||
| * Paper: https://arxiv.org/abs/2404.04878 | ||||
| * Code: | ||||
| 
 | ||||
| **Diffusion-based Blind Text Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2312.08886 | ||||
| * Code: https://github.com/YuzheZhang-1999/DiffTSR | ||||
| 
 | ||||
| **DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF** | ||||
| * Paper: https://arxiv.org/abs/2404.00874 | ||||
| * Code: | ||||
| 
 | ||||
| **Image Processing GNN: Breaking Rigidity in Super-Resolution** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Tian_Image_Processing_GNN_Breaking_Rigidity_in_Super-Resolution_CVPR_2024_paper.html | ||||
| * Code: https://github.com/huawei-noah/Efficient-Computing/tree/master/LowLevel/IPG | ||||
| 
 | ||||
| **Latent Modulated Function for Computational Optimal Continuous Image Representation** | ||||
| * Paper: https://arxiv.org/abs/2404.16451 | ||||
| * Code: https://github.com/HeZongyao/LMF | ||||
| 
 | ||||
| **Learning Coupled Dictionaries from Unpaired Data for Image Super-Resolution** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Learning_Coupled_Dictionaries_from_Unpaired_Data_for_Image_Super-Resolution_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Learning Large-Factor EM Image Super-Resolution with Generative Priors** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.html | ||||
| * Code: https://github.com/jtshou/GPEMSR | ||||
| 
 | ||||
| **Low-Res Leads the Way: Improving Generalization for Super-Resolution by Self-Supervised Learning** | ||||
| * Paper: https://arxiv.org/abs/2403.02601 | ||||
| * Code: https://github.com/haoyuc/LWay | ||||
| 
 | ||||
| **Navigating Beyond Dropout: An Intriguing Solution towards Generalizable Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2402.18929v2 | ||||
| * Code: https://github.com/Dreamzz5/Simple-Align | ||||
| 
 | ||||
| **Neural Super-Resolution for Real-time Rendering with Radiance Demodulation** | ||||
| * Paper: https://arxiv.org/abs/2308.06699 | ||||
| * Code: https://github.com/Riga2/NSRD | ||||
| 
 | ||||
| **Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2404.04785 | ||||
| * Code: https://github.com/GuangYuanKK/DiffMSR | ||||
| 
 | ||||
| **SeD: Semantic-Aware Discriminator for Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2402.19387 | ||||
| * Code: https://github.com/lbc12345/SeD | ||||
| 
 | ||||
| **SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2311.16518 | ||||
| * Code: https://github.com/cswry/SeeSR | ||||
| 
 | ||||
| **Self-Adaptive Reality-Guided Diffusion for Artifact-Free Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2403.16643 | ||||
| * Code: https://github.com/ProAirVerse/Self-Adaptive-Guidance-Diffusion | ||||
| 
 | ||||
| **SinSR: Diffusion-Based Image Super-Resolution in a Single Step** | ||||
| * Paper: https://github.com/wyf0912/SinSR/blob/main/main.pdf | ||||
| * Code: https://github.com/wyf0912/SinSR | ||||
| 
 | ||||
| **Super-Resolution Reconstruction from Bayer-Pattern Spike Streams** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Dong_Super-Resolution_Reconstruction_from_Bayer-Pattern_Spike_Streams_CVPR_2024_paper.html | ||||
| * Code: https://github.com/csycdong/CSCSR | ||||
| 
 | ||||
| **Text-guided Explorable Image Super-resolution** | ||||
| * Paper: https://arxiv.org/abs/2403.01124 | ||||
| * Code: | ||||
| 
 | ||||
| **Training Generative Image Super-Resolution Models by Wavelet-Domain Losses Enables Better Control of Artifacts** | ||||
| * Paper: https://arxiv.org/abs/2402.19215 | ||||
| * Code: https://github.com/mandalinadagi/wgsr | ||||
| 
 | ||||
| **Transcending the Limit of Local Window: Advanced Super-Resolution Transformer with Adaptive Token Dictionary** | ||||
| * Paper: https://arxiv.org/abs/2401.08209 | ||||
| * Code: https://github.com/LabShuHangGU/Adaptive-Token-Dictionary | ||||
| 
 | ||||
| **Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer** | ||||
| * Paper: https://arxiv.org/abs/2303.17783 | ||||
| * Code: | ||||
| 
 | ||||
| **Universal Robustness via Median Randomized Smoothing for Real-World Super-Resolution** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chaouai_Universal_Robustness_via_Median_Randomized_Smoothing_for_Real-World_Super-Resolution_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| ### Video Super-Resolution | ||||
| **Enhancing Video Super-Resolution via Implicit Resampling-based Alignment** | ||||
| * Paper: https://github.com/kai422/IART/blob/main/arxiv.pdf | ||||
| * Code: https://github.com/kai422/IART | ||||
| 
 | ||||
| **FMA-Net: Flow-Guided Dynamic Filtering and Iterative Feature Refinement with Multi-Attention for Joint Video Super-Resolution and Deblurring** | ||||
| * Paper: https://arxiv.org/abs/2401.03707 | ||||
| * Code: https://github.com/KAIST-VICLab/FMA-Net | ||||
| 
 | ||||
| **Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2403.17000 | ||||
| * Code: | ||||
| 
 | ||||
| **Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2312.06640 | ||||
| * Code: https://github.com/sczhou/Upscale-A-Video | ||||
| 
 | ||||
| **Video Super-Resolution Transformer with Masked Inter&Intra-Frame Attention** | ||||
| * Paper: https://arxiv.org/abs/2401.06312 | ||||
| * Code: https://github.com/LabShuHangGU/MIA-VSR | ||||
| ## 2.图像去雨(Image Deraining) | ||||
| **Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining** | ||||
| * Paper: https://arxiv.org/abs/2404.01547 | ||||
| * Code: https://github.com/cschenxiang/NeRD-Rain | ||||
| ## 3.图像去雾(Image Dehazing) | ||||
| **A Semi-supervised Nighttime Dehazing Baseline with Spatial-Frequency Aware and Realistic Brightness Constraint** | ||||
| * Paper: https://arxiv.org/abs/2403.18548 | ||||
| * Code: https://github.com/Xiaofeng-life/SFSNiD | ||||
| 
 | ||||
| **Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing** | ||||
| * Paper: https://arxiv.org/abs/2403.01105 | ||||
| * Code: | ||||
| 
 | ||||
| **ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing** | ||||
| * Paper: https://arxiv.org/abs/2404.17825v1 | ||||
| * Code: | ||||
| 
 | ||||
| ### Video Dehazing | ||||
| **Driving-Video Dehazing with Non-Aligned Regularization for Safety Assistance** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Fan_Driving-Video_Dehazing_with_Non-Aligned_Regularization_for_Safety_Assistance_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| ## 4.去模糊(Deblurring) | ||||
| **A Unified Framework for Microscopy Defocus Deblur with Multi-Pyramid Transformer and Contrastive Learning** | ||||
| * Paper: https://arxiv.org/abs/2403.02611 | ||||
| * Code: https://github.com/PieceZhang/MPT-CataBlur | ||||
| 
 | ||||
| **AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring** | ||||
| * Paper: https://github.com/INVOKERer/AdaRevD/blob/master/AdaRevD.pdf | ||||
| * Code: https://github.com/INVOKERer/AdaRevD | ||||
| 
 | ||||
| **Blur2Blur: Blur Conversion for Unsupervised Image Deblurring on Unknown Domains** | ||||
| * Paper: https://arxiv.org/abs/2403.16205 | ||||
| * Code: https://github.com/VinAIResearch/Blur2Blur | ||||
| 
 | ||||
| **Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Lv_Fourier_Priors-Guided_Diffusion_for_Zero-Shot_Joint_Low-Light_Enhancement_and_Deblurring_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **ID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentation** | ||||
| * Paper:https://arxiv.org/abs/2312.10998 | ||||
| * Code: https://github.com/plusgood-steven/ID-Blau | ||||
| 
 | ||||
| **LDP: Language-driven Dual-Pixel Image Defocus Deblurring Network** | ||||
| * Paper: https://arxiv.org/abs/2307.09815 | ||||
| * Code: https://github.com/noxsine/LDP | ||||
| 
 | ||||
| **Mitigating Motion Blur in Neural Radiance Fields with Events and Frames** | ||||
| * Paper: https://rpg.ifi.uzh.ch/docs/CVPR24_Cannici.pdf | ||||
| * Code: https://github.com/uzh-rpg/EvDeblurNeRF | ||||
| 
 | ||||
| **Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring** | ||||
| * Paper: https://arxiv.org/abs/2404.13153 | ||||
| * Code: https://github.com/ChengxuLiu/MISCFilter | ||||
| 
 | ||||
| **Motion Blur Decomposition with Cross-shutter Guidance** | ||||
| * Paper: https://arxiv.org/abs/2404.01120 | ||||
| * Code: https://github.com/jixiang2016/dualBR | ||||
| 
 | ||||
| **Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization** | ||||
| * Paper: https://arxiv.org/abs/2404.12168 | ||||
| * Code: | ||||
| 
 | ||||
| **Spike-guided Motion Deblurring with Unknown Modal Spatiotemporal Alignment** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper.html | ||||
| * Code: https://github.com/Leozhangjiyuan/UaSDN | ||||
| 
 | ||||
| **Unsupervised Blind Image Deblurring Based on Self-Enhancement** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Unsupervised_Blind_Image_Deblurring_Based_on_Self-Enhancement_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| ### Video Deblurring | ||||
| **Blur-aware Spatio-temporal Sparse Transformer for Video Deblurring** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Blur-aware_Spatio-temporal_Sparse_Transformer_for_Video_Deblurring_CVPR_2024_paper.html | ||||
| * Code: https://github.com/huicongzhang/BSSTNet | ||||
| 
 | ||||
| **EVS-assisted Joint Deblurring Rolling-Shutter Correction and Video Frame Interpolation through Sensor Inverse Modeling** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Jiang_EVS-assisted_Joint_Deblurring_Rolling-Shutter_Correction_and_Video_Frame_Interpolation_through_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Frequency-aware Event-based Video Deblurring for Real-World Motion Blur** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Kim_Frequency-aware_Event-based_Video_Deblurring_for_Real-World_Motion_Blur_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Latency Correction for Event-guided Deblurring and Frame Interpolation** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Latency_Correction_for_Event-guided_Deblurring_and_Frame_Interpolation_CVPR_2024_paper.html | ||||
| ****Code: | ||||
| 
 | ||||
| ## 5.去噪(Denoising) | ||||
| **LAN: Learning to Adapt Noise for Image Denoising** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Kim_LAN_Learning_to_Adapt_Noise_for_Image_Denoising_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **LED: A Large-scale Real-world Paired Dataset for Event Camera Denoising** | ||||
| * Paper: https://arxiv.org/abs/2405.19718 | ||||
| * Code: | ||||
| 
 | ||||
| **Robust Image Denoising through Adversarial Frequency Mixup** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ryou_Robust_Image_Denoising_through_Adversarial_Frequency_Mixup_CVPR_2024_paper.html | ||||
| * Code: https://github.com/dhryougit/AFM | ||||
| 
 | ||||
| **Real-World Mobile Image Denoising Dataset with Efficient Baselines** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Flepp_Real-World_Mobile_Image_Denoising_Dataset_with_Efficient_Baselines_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder** | ||||
| * Paper: https://arxiv.org/abs/2403.17502 | ||||
| * Code: https://github.com/zhengdharia/SeNM-VAE | ||||
| 
 | ||||
| **Transfer CLIP for Generalizable Image Denoising** | ||||
| * Paper: https://arxiv.org/abs/2403.15132 | ||||
| * Code: | ||||
| 
 | ||||
| **Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zeng_Unmixing_Diffusion_for_Self-Supervised_Hyperspectral_Image_Denoising_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.html | ||||
| * Code: https://github.com/Doyle59217/ZeroIG | ||||
| 
 | ||||
| ## 6.图像恢复(Image Restoration) | ||||
| **Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhou_Adapt_or_Perish_Adaptive_Sparse_Transformer_with_Attentive_Feature_Refinement_CVPR_2024_paper.html | ||||
| * Code: https://github.com/joshyZhou/AST | ||||
| 
 | ||||
| **Boosting Image Restoration via Priors from Pre-trained Models** | ||||
| * Paper: https://arxiv.org/abs/2403.06793 | ||||
| * Code: | ||||
| 
 | ||||
| **CoDe: An Explicit Content Decoupling Framework for Image Restoration** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Gu_CoDe_An_Explicit_Content_Decoupling_Framework_for_Image_Restoration_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Deep Equilibrium Diffusion Restoration with Parallel Sampling** | ||||
| * Paper: https://arxiv.org/abs/2311.11600 | ||||
| * Code: https://github.com/caojiezhang/DeqIR | ||||
| 
 | ||||
| **Diff-Plugin: Revitalizing Details for Diffusion-based Low-level Tasks** | ||||
| * Paper: https://arxiv.org/abs/2403.00644 | ||||
| * Code: https://github.com/yuhaoliu7456/Diff-Plugin | ||||
| 
 | ||||
| **Distilling Semantic Priors from SAM to Efficient Image Restoration Models** | ||||
| * Paper: https://arxiv.org/abs/2403.16368 | ||||
| * Code: | ||||
| 
 | ||||
| **DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks** | ||||
| * Paper: https://arxiv.org/abs/2405.04408 | ||||
| * Code: https://github.com/ZZZHANG-jx/DocRes | ||||
| 
 | ||||
| **HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models** | ||||
| * Paper: https://arxiv.org/abs/2402.15865 | ||||
| * Code: https://github.com/LiPang/HIRDiff | ||||
| 
 | ||||
| **Image Restoration by Denoising Diffusion Models With Iteratively Preconditioned Guidance** | ||||
| * Paper: https://arxiv.org/abs/2312.16519 | ||||
| * Code: https://github.com/tirer-lab/DDPG | ||||
| 
 | ||||
| **Improving Image Restoration through Removing Degradations in Textual Representations** | ||||
| * Paper: https://arxiv.org/abs/2312.17334 | ||||
| * Code: https://github.com/mrluin/TextualDegRemoval | ||||
| 
 | ||||
| **Learning Degradation-unaware Representation with Prior-based Latent Transformations for Blind Face Restoration** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Xie_Learning_Degradation-unaware_Representation_with_Prior-based_Latent_Transformations_for_Blind_Face_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Learning Diffusion Texture Priors for Image Restoration** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ye_Learning_Diffusion_Texture_Priors_for_Image_Restoration_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Look-Up Table Compression for Efficient Image Restoration** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Li_Look-Up_Table_Compression_for_Efficient_Image_Restoration_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration** | ||||
| * Paper: https://arxiv.org/abs/2312.02918 | ||||
| * Code: | ||||
| 
 | ||||
| **PFStorer: Personalized Face Restoration and Super-Resolution** | ||||
| * Paper: https://arxiv.org/abs/2403.08436 | ||||
| * Code: | ||||
| 
 | ||||
| **Restoration by Generation with Constrained Priors** | ||||
| * Paper: https://arxiv.org/abs/2312.17161 | ||||
| * Code: | ||||
| 
 | ||||
| **Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild** | ||||
| * Paper: https://arxiv.org/abs/2401.13627 | ||||
| * Code: https://github.com/Fanghua-Yu/SUPIR | ||||
| 
 | ||||
| **Selective Hourglass Mapping for Universal Image Restoration Based on Diffusion Model** | ||||
| * Paper: https://arxiv.org/abs/2403.11157 | ||||
| * Code: https://github.com/iSEE-Laboratory/DiffUIR | ||||
| 
 | ||||
| **Turb-Seg-Res: A Segment-then-Restore Pipeline for Dynamic Videos with Atmospheric Turbulence** | ||||
| * Paper: https://arxiv.org/abs/2404.13605 | ||||
| Code: https://github.com/Riponcs/Turb-Seg-Res | ||||
| 
 | ||||
| **WaveFace: Authentic Face Restoration with Efficient Frequency Recovery** | ||||
| * Paper: https://arxiv.org/abs/2403.12760 | ||||
| * Code: | ||||
| 
 | ||||
| **Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration** | ||||
| * Paper: https://arxiv.org/abs/2311.16845 | ||||
| * Code: https://github.com/zhihefang/wf-diff | ||||
| 
 | ||||
| ## 7.图像增强(Image Enhancement) | ||||
| **Color Shift Estimation-and-Correction for Image Enhancement** | ||||
| * Paper: https://drive.google.com/file/d/1jZB2rW_I2WLTE5yNA4IZq9wb5p4NNOCR/view | ||||
| * Code: https://github.com/yiyulics/CSEC | ||||
| 
 | ||||
| **Empowering Resampling Operation for Ultra-High-Definition Image Enhancement with Model-Aware Guidance** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Yu_Empowering_Resampling_Operation_for_Ultra-High-Definition_Image_Enhancement_with_Model-Aware_Guidance_CVPR_2024_paper.html | ||||
| * Code: https://github.com/YPatrickW/LMAR | ||||
| 
 | ||||
| **Fourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Lv_Fourier_Priors-Guided_Diffusion_for_Zero-Shot_Joint_Low-Light_Enhancement_and_Deblurring_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **FlowIE:Efficient Image Enhancement via Rectified Flow** | ||||
| * Paper: https://arxiv.org/abs/2406.00508 | ||||
| * Code: https://github.com/EternalEvan/FlowIE | ||||
| 
 | ||||
| **Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving** | ||||
| * Paper: https://arxiv.org/abs/2404.04804 | ||||
| * Code: https://github.com/jinlong17/LightDiff | ||||
| 
 | ||||
| **Robust Depth Enhancement via Polarization Prompt Fusion Tuning** | ||||
| * Paper: https://arxiv.org/abs/2404.04318 | ||||
| * Code: https://github.com/lastbasket/Polarization-Prompt-Fusion-Tuning | ||||
| 
 | ||||
| **Specularity Factorization for Low Light Enhancement** | ||||
| * Paper: https://arxiv.org/abs/2404.01998 | ||||
| * Code: | ||||
| 
 | ||||
| **Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach** | ||||
| * Paper: https://arxiv.org/abs/2404.00834 | ||||
| * Code: https://github.com/EthanLiang99/EvLight | ||||
| 
 | ||||
| **ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.html | ||||
| * Code: https://github.com/Doyle59217/ZeroIG | ||||
| 
 | ||||
| **Zero-Reference Low-Light Enhancement via Physical Quadruple Priors** | ||||
| * Paper: https://arxiv.org/abs/2403.12933 | ||||
| * Code: https://github.com/daooshee/QuadPrior | ||||
| 
 | ||||
| ### Video Enhancement | ||||
| **Binarized Low-light Raw Video Enhancement** | ||||
| * Paper: https://arxiv.org/abs/2403.19944 | ||||
| * Code: https://github.com/zhanggengchen/BRVE | ||||
| 
 | ||||
| **UVEB: A Large-scale Benchmark and Baseline Towards Real-World Underwater Video Enhancement** | ||||
| * Paper: https://arxiv.org/abs/2404.14542 | ||||
| * Code: https://github.com/yzbouc/UVEB | ||||
| 
 | ||||
| ## 8.图像修复(Inpainting) | ||||
| **Amodal Completion via Progressive Mixed Context Diffusion** | ||||
| * Paper: https://arxiv.org/abs/2312.15540 | ||||
| * Code: https://github.com/k8xu/amodal | ||||
| 
 | ||||
| **Brush2Prompt: Contextual Prompt Generator for Object Inpainting** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Don’t Look into the Dark: Latent Codes for Pluralistic Image Inpainting** | ||||
| * Paper: https://arxiv.org/abs/2403.18186 | ||||
| * Code: | ||||
| 
 | ||||
| **Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting** | ||||
| * Paper: https://arxiv.org/abs/2403.19898 | ||||
| * Code: https://github.com/htyjers/StrDiffusion | ||||
| 
 | ||||
| ### Video Inpainting | ||||
| **AVID: Any-Length Video Inpainting with Diffusion Model** | ||||
| * Paper: https://arxiv.org/abs/2312.03816 | ||||
| * Code: https://github.com/zhang-zx/AVID | ||||
| 
 | ||||
| **Towards Language-Driven Video Inpainting via Multimodal Large Language Models** | ||||
| * Paper: https://arxiv.org/abs/2401.10226 | ||||
| * Code: https://github.com/jianzongwu/Language-Driven-Video-Inpainting | ||||
| 
 | ||||
| ## 9.高动态范围成像(HDR Imaging) | ||||
| **CLIPtone: Unsupervised Learning for Text-based Image Tone Adjustment** | ||||
| * Paper: https://arxiv.org/abs/2404.01123 | ||||
| * Code: https://github.com/hmin970922/CLIPtone/ | ||||
| 
 | ||||
| **Deep Video Inverse Tone Mapping Based on Temporal Clues** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ye_Deep_Video_Inverse_Tone_Mapping_Based_on_Temporal_Clues_CVPR_2024_paper.html | ||||
| * Code: https://github.com/ye3why/VITM-TC | ||||
| 
 | ||||
| **Generating Content for HDR Deghosting from Frequency View** | ||||
| * Paper: https://arxiv.org/abs/2404.00849 | ||||
| * Code: | ||||
| 
 | ||||
| **HDRFlow: Real-Time HDR Video Reconstruction with Large Motions** | ||||
| * Paper: https://arxiv.org/abs/2403.03447 | ||||
| * Code: https://github.com/OpenImagingLab/HDRFlow | ||||
| 
 | ||||
| **Perceptual Assessment and Optimization of HDR Image Rendering** | ||||
| * Paper: https://arxiv.org/abs/2310.12877v4 | ||||
| * Code: https://github.com/cpb68/HDRQA/ | ||||
| 
 | ||||
| **Towards HDR and HFR Video from Rolling-Mixed-Bit Spikings** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chang_Towards_HDR_and_HFR_Video_from_Rolling-Mixed-Bit_Spikings_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Towards Real-World HDR Video Reconstruction: A Large-Scale Benchmark Dataset and A Two-Stage Alignment Network** | ||||
| * Paper: https://arxiv.org/abs/2405.00244 | ||||
| * Code: https://github.com/yungsyu99/Real-HDRV | ||||
| 
 | ||||
| **Zero-Shot Structure-Preserving Diffusion Model for High Dynamic Range Tone Mapping** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhu_Zero-Shot_Structure-Preserving_Diffusion_Model_for_High_Dynamic_Range_Tone_Mapping_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| ## 10.图像质量评价(Image Quality Assessment) | ||||
| **Blind Image Quality Assessment Based on Geometric Order Learning** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shin_Blind_Image_Quality_Assessment_Based_on_Geometric_Order_Learning_CVPR_2024_paper.html | ||||
| * Code: https://github.com/nhshin-mcl/QCN | ||||
| 
 | ||||
| **Boosting Image Quality Assessment through Efficient Transformer Adaptation with Local Feature Enhancement** | ||||
| * Paper: https://arxiv.org/abs/2308.12001 | ||||
| * Code: | ||||
| 
 | ||||
| **Bridging the Synthetic-to-Authentic Gap: Distortion-Guided Unsupervised Domain Adaptation for Blind Image Quality Assessment** | ||||
| * Paper: https://arxiv.org/abs/2405.04167 | ||||
| * Code: | ||||
| 
 | ||||
| **CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Ou_CLIB-FIQA_Face_Image_Quality_Assessment_with_Confidence_Calibration_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment** | ||||
| * Paper: https://arxiv.org/abs/2403.10066 | ||||
| * Code: | ||||
| 
 | ||||
| **Deep Generative Model based Rate-Distortion for Image Downscaling Assessment** | ||||
| * Paper: https://arxiv.org/abs/2403.15139 | ||||
| * Code: https://github.com/Byronliang8/IDA-RD | ||||
| 
 | ||||
| **Defense Against Adversarial Attacks on No-Reference Image Quality Models with Gradient Norm Regularization** | ||||
| * Paper: https://arxiv.org/abs/2403.11397 | ||||
| * Code: https://github.com/YangiD/DefenseIQA-NT | ||||
| 
 | ||||
| **DSL-FIQA: Assessing Facial Image Quality via Dual-Set Degradation Learning and Landmark-Guided Transformer** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **EvalCrafter: Benchmarking and Evaluating Large Video Generation Models** | ||||
| * Paper: https://arxiv.org/abs/2310.11440 | ||||
| * Code: https://github.com/evalcrafter/EvalCrafter | ||||
| 
 | ||||
| **FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment** | ||||
| * Paper: https://arxiv.org/abs/2405.06887 | ||||
| * Code: https://github.com/PKU-ICST-MIPL/FineParser_CVPR2024 | ||||
| 
 | ||||
| **KVQ: Kwai Video Quality Assessment for Short-form Videos** | ||||
| * Paper: https://arxiv.org/abs/2402.07220 | ||||
| * Code: https://github.com/lixinustc/KVQ-Challenge-CVPR-NTIRE2024 | ||||
| 
 | ||||
| **Learned Scanpaths Aid Blind Panoramic Video Quality Assessment** | ||||
| * Paper: https://arxiv.org/abs/2404.00252 | ||||
| * Code: https://github.com/kalofan/AutoScanpathQA | ||||
| 
 | ||||
| **Modular Blind Video Quality Assessment** | ||||
| * Paper: https://arxiv.org/abs/2402.19276 | ||||
| * Code: https://github.com/winwinwenwen77/ModularBVQA | ||||
| 
 | ||||
| **On the Content Bias in Fréchet Video Distance** | ||||
| * Paper: https://arxiv.org/abs/2404.12391 | ||||
| * Code: https://github.com/songweige/content-debiased-fvd | ||||
| 
 | ||||
| **PTM-VQA: Efficient Video Quality Assessment Leveraging Diverse PreTrained Models from the Wild** | ||||
| * Paper: https://arxiv.org/abs/2405.17765 | ||||
| * Code: | ||||
| 
 | ||||
| **Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models** | ||||
| * Paper: https://arxiv.org/abs/2311.06783 | ||||
| * Code: https://github.com/Q-Future/Q-Instruct | ||||
| 
 | ||||
| ## 11.插帧(Frame Interpolation) | ||||
| **Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images** | ||||
| Paper: https://arxiv.org/abs/2404.01464 | ||||
| Code: https://github.com/jungeun122333/UVI-Net | ||||
| 
 | ||||
| **IQ-VFI: Implicit Quadratic Motion Estimation for Video Frame Interpolation** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Hu_IQ-VFI_Implicit_Quadratic_Motion_Estimation_for_Video_Frame_Interpolation_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Perceptual-Oriented Video Frame Interpolation Via Asymmetric Synergistic Blending** | ||||
| * Paper: https://arxiv.org/abs/2404.06692 | ||||
| * Code: | ||||
| 
 | ||||
| **Sparse Global Matching for Video Frame Interpolation with Large Motion** | ||||
| * Paper: https://arxiv.org/abs/2404.06913 | ||||
| * Code: https://github.com/MCG-NJU/SGM-VFI | ||||
| 
 | ||||
| **SportsSloMo: A New Benchmark and Baselines for Human-centric Video Frame Interpolation** | ||||
| * Paper: https://arxiv.org/abs/2308.16876 | ||||
| * Code: https://github.com/neu-vi/SportsSloMo | ||||
| 
 | ||||
| **TTA-EVF: Test-Time Adaptation for Event-based Video Frame Interpolation via Reliable Pixel and Sample Estimation** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Cho_TTA-EVF_Test-Time_Adaptation_for_Event-based_Video_Frame_Interpolation_via_Reliable_CVPR_2024_paper.html | ||||
| * Code: https://github.com/Chohoonhee/TTA-EVF | ||||
| 
 | ||||
| **Video Frame Interpolation via Direct Synthesis with the Event-based Reference** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Video_Frame_Interpolation_via_Direct_Synthesis_with_the_Event-based_Reference_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Video Interpolation with Diffusion Models** | ||||
| * Paper: https://arxiv.org/abs/2404.01203 | ||||
| * Code: | ||||
| 
 | ||||
| ## 12.视频/图像压缩(Video/Image Compression) | ||||
| **C3: High-performance and low-complexity neural compression from a single image or video** | ||||
| * Paper: https://arxiv.org/abs/2312.02753 | ||||
| * Code: https://github.com/google-deepmind/c3_neural_compression | ||||
| 
 | ||||
| **Generative Latent Coding for Ultra-Low Bitrate Image Compression** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Jia_Generative_Latent_Coding_for_Ultra-Low_Bitrate_Image_Compression_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis** | ||||
| * Paper: https://arxiv.org/abs/2403.16258 | ||||
| * Code: | ||||
| 
 | ||||
| **Learned Lossless Image Compression based on Bit Plane Slicing** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Learned_Lossless_Image_Compression_based_on_Bit_Plane_Slicing_CVPR_2024_paper.html | ||||
| * Code: https://github.com/ZZ022/ArIB-BPS | ||||
| 
 | ||||
| **Towards Backward-Compatible Continual Learning of Image Compression** | ||||
| * Paper: https://arxiv.org/abs/2402.18862 | ||||
| * Code: https://gitlab.com/viper-purdue/continual-compression | ||||
| 
 | ||||
| ### Video Compression | ||||
| **Task-Aware Encoder Control for Deep Video Compression** | ||||
| * Paper: https://arxiv.org/abs/2404.04848 | ||||
| * Code: | ||||
| 
 | ||||
| **Low-Latency Neural Stereo Streaming** | ||||
| * Paper: https://arxiv.org/abs/2403.17879 | ||||
| * Code: | ||||
| 
 | ||||
| **Neural Video Compression with Feature Modulation** | ||||
| * Paper: https://arxiv.org/abs/2402.17414 | ||||
| * Code: https://github.com/microsoft/DCVC | ||||
| 
 | ||||
| ## 13.压缩图像质量增强(Compressed Image Quality Enhancement) | ||||
| **CPGA: Coding Priors-Guided Aggregation Network for Compressed Video Quality Enhancement** | ||||
| * Paper: https://arxiv.org/abs/2403.10362 | ||||
| * Code: | ||||
| 
 | ||||
| **Enhancing Quality of Compressed Images by Mitigating Enhancement Bias Towards Compression Domain** | ||||
| * Paper: https://arxiv.org/abs/2402.17200 | ||||
| * Code: | ||||
| 
 | ||||
| ## 14.图像去反光(Image Reflection Removal) | ||||
| **Language-guided Image Reflection Separation** | ||||
| * Paper: https://arxiv.org/abs/2402.11874 | ||||
| * Code: | ||||
| 
 | ||||
| **Revisiting Singlelmage Reflection Removal in the Wild** | ||||
| * Paper: https://arxiv.org/abs/2311.17320 | ||||
| * Code: https://github.com/zhuyr97/Reflection_RemoVal_CVPR2024 | ||||
| 
 | ||||
| ## 15.图像去阴影(Image Shadow Removal) | ||||
| **HomoFormer: Homogenized Transformer for Image Shadow Removal** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper.html | ||||
| * Code: https://github.com/jiexiaou/HomoFormer | ||||
| 
 | ||||
| ## 16.图像上色(Image Colorization) | ||||
| **Automatic Controllable Colorization by Imagination** | ||||
| * Paper: https://arxiv.org/abs/2404.05661 | ||||
| * Code: https://github.com/xy-cong/imagine-colorization | ||||
| 
 | ||||
| **Generative Quanta Color Imaging** | ||||
| * Paper: https://arxiv.org/abs/2403.19066 | ||||
| * Code: | ||||
| 
 | ||||
| **Learning Inclusion Matching for Animation Paint Bucket Colorization** | ||||
| * Paper: https://arxiv.org/abs/2403.18342 | ||||
| * Code: https://github.com/ykdai/BasicPBC | ||||
| 
 | ||||
| ## 17.图像和谐化(Image Harmonization) | ||||
| **Relightful Harmonization: Lighting-aware Portrait Background Replacement** | ||||
| * Paper: https://arxiv.org/abs/2312.06886 | ||||
| * Code: | ||||
|    | ||||
| **Video Harmonization with Triplet Spatio-Temporal Variation Patterns** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Guo_Video_Harmonization_with_Triplet_Spatio-Temporal_Variation_Patterns_CVPR_2024_paper.html | ||||
| * Code: https://github.com/zhenglab/VideoTripletTransformer | ||||
| ## 18.视频稳相(Video Stabilization) | ||||
| **3D Multi-frame Fusion for Video Stabilization** | ||||
| * Paper: https://arxiv.org/abs/2404.12887 | ||||
| * Code: | ||||
| 
 | ||||
| **Harnessing Meta-Learning for Improving Full-Frame Video Stabilization** | ||||
| * Paper: https://arxiv.org/abs/2403.03662 | ||||
| * Code: https://github.com/MKashifAli/MetaVideoStab | ||||
| 
 | ||||
| ## 19.图像融合(Image Fusion) | ||||
| **Equivariant Multi-Modality Image Fusion** | ||||
| * Paper: https://arxiv.org/abs/2305.11443 | ||||
| * Code: https://github.com/Zhaozixiang1228/MMIF-EMMA | ||||
| 
 | ||||
| **MRFS: Mutually Reinforcing Image Fusion and Segmentation** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_MRFS_Mutually_Reinforcing_Image_Fusion_and_Segmentation_CVPR_2024_paper.html | ||||
| * Code: https://github.com/HaoZhang1018/MRFS | ||||
| 
 | ||||
| **Neural Spline Fields for Burst Image Fusion and Layer Separation** | ||||
| * Paper: https://arxiv.org/abs/2312.14235 | ||||
| * Code: https://github.com/princeton-computational-imaging/NSF | ||||
| 
 | ||||
| **Probing Synergistic High-Order Interaction in Infrared and Visible Image Fusion** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Probing_Synergistic_High-Order_Interaction_in_Infrared_and_Visible_Image_Fusion_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Revisiting Spatial-Frequency Information Integration from a Hierarchical Perspective for Panchromatic and Multi-Spectral Image Fusion** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Probing_Synergistic_High-Order_Interaction_in_Infrared_and_Visible_Image_Fusion_CVPR_2024_paper.html | ||||
| * Code: | ||||
| 
 | ||||
| **Text-IF: Leveraging Semantic Text Guidance for Degradation-Aware and Interactive Image Fusion** | ||||
| * Paper: https://arxiv.org/abs/2403.16387 | ||||
| * Code: https://github.com/XunpengYi/Text-IF | ||||
| 
 | ||||
| **Task-Customized Mixture of Adapters for General Image Fusion** | ||||
| * Paper: https://arxiv.org/abs/2403.12494 | ||||
| * Code: https://github.com/YangSun22/TC-MoA | ||||
| 
 | ||||
| ## 20.其他任务(Others) | ||||
| **Close Imitation of Expert Retouching for Black-and-White Photography** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Shin_Close_Imitation_of_Expert_Retouching_for_Black-and-White_Photography_CVPR_2024_paper.html | ||||
| * Code: https://github.com/seunghyuns98/Decolorization | ||||
| 
 | ||||
| **Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening** | ||||
| Paper: https://arxiv.org/abs/2404.07543 | ||||
| Code: https://github.com/Duanyll/CANConv | ||||
| 
 | ||||
| **DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral Diffusion Model** | ||||
| * Paper: https://arxiv.org/abs/2311.11417 | ||||
| * Code: https://github.com/PAN083/DiffSCI | ||||
| 
 | ||||
| **Dual Prior Unfolding for Snapshot Compressive Imaging** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Dual_Prior_Unfolding_for_Snapshot_Compressive_Imaging_CVPR_2024_paper.html | ||||
| * Code: https://github.com/ZhangJC-2k/DPU | ||||
| 
 | ||||
| **Dual-Camera Smooth Zoom on Mobile Phones** | ||||
| * Paper: https://arxiv.org/abs/2404.04908 | ||||
| * Code: https://github.com/ZcsrenlongZ/ZoomGS | ||||
| 
 | ||||
| **Dual-scale Transformer for Large-scale Single-Pixel Imaging** | ||||
| * Paper: https://arxiv.org/abs/2404.05001 | ||||
| * Code: https://github.com/Gang-Qu/HATNet-SPI | ||||
| 
 | ||||
| **Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for Video Adverse Weather Removal** | ||||
| * Paper: https://arxiv.org/abs/2403.07684 | ||||
| * Code: https://github.com/scott-yjyang/DiffTTA | ||||
| 
 | ||||
| **Language-driven All-in-one Adverse Weather Removal** | ||||
| * Paper: https://arxiv.org/abs/2312.01381 | ||||
| * Code: | ||||
| 
 | ||||
| **Learning to Remove Wrinkled Transparent Film with Polarized Prior** | ||||
| * Paper: https://arxiv.org/abs/2403.04368 | ||||
| * Code: https://github.com/jqtangust/FilmRemovalww | ||||
| 
 | ||||
| **Misalignment-Robust Frequency Distribution Loss for Image Transformation** | ||||
| * Paper: https://arxiv.org/abs/2402.18192 | ||||
| * Code: https://github.com/eezkni/FDL | ||||
| 
 | ||||
| **On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation** | ||||
| * Paper: https://arxiv.org/abs/2404.08540 | ||||
| * Code: https://github.com/agneet42/lang_depth | ||||
| 
 | ||||
| **ParamISP: Learned Forward and Inverse ISPs using Camera Parameters** | ||||
| * Paper: https://arxiv.org/abs/2312.13313 | ||||
| * Code: https://github.com/woo525/ParamISP | ||||
| 
 | ||||
| **RecDiffusion: Rectangling for Image Stitching with Diffusion Models** | ||||
| * Paper: https://arxiv.org/abs/2402.18192 | ||||
| * Code: https://github.com/lhaippp/RecDiffusion | ||||
| 
 | ||||
| **Residual Denoising Diffusion Models** | ||||
| * Paper: https://arxiv.org/abs/2308.13712 | ||||
| * Code: https://github.com/nachifur/RDDM | ||||
| 
 | ||||
| **Real-Time Exposure Correction via Collaborative Transformations and Adaptive Sampling** | ||||
| * Paper: https://arxiv.org/abs/2404.11884 | ||||
| * Code: https://github.com/HUST-IAL/CoTF | ||||
| 
 | ||||
| **SCINeRF: Neural Radiance Fields from a Snapshot Compressive Image** | ||||
| * Paper: https://arxiv.org/abs/2403.20018 | ||||
| * Code: https://github.com/WU-CVGL/SCINeRF | ||||
| 
 | ||||
| **Seeing Motion at Nighttime with an Event Camera** | ||||
| * Paper: https://arxiv.org/abs/2404.11884 | ||||
| * Code: https://github.com/Liu-haoyue/NER-Net | ||||
| 
 | ||||
| **Shadow Generation for Composite Image Using Diffusion Model** | ||||
| * Paper: https://arxiv.org/abs/2403.15234 | ||||
| * Code: https://github.com/bcmi/Object-Shadow-Generation-Dataset-DESOBAv2 | ||||
| 
 | ||||
| **Improving Spectral Snapshot Reconstruction with Spectral-Spatial Rectification** | ||||
| * Paper: https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Improving_Spectral_Snapshot_Reconstruction_with_Spectral-Spatial_Rectification_CVPR_2024_paper.html | ||||
| * Code: https://github.com/ZhangJC-2k/SSR | ||||
| 
 | ||||
| ## 参考 | ||||
| 相关Low-Level-Vision整理 | ||||
| Awesome-CVPR2020-Low-Level-Vision | ||||
| Awesome-ECCV2020-Low-Level-Vision | ||||
| Awesome-Low-Level-Vision-Research-Groups | ||||
| Awesome-AIGC-Research-Groups | ||||
							
								
								
									
										40
									
								
								Docs/2024-11-15/report_1115.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								Docs/2024-11-15/report_1115.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,40 @@ | ||||
| # 2024-11-15感知智能组会汇报 | ||||
| # 一、近期工作 | ||||
|    **Image Generation** vs **Image Reconstruction** | ||||
|    * **Image Generation**:指通过算法从零开始生成新的图像,通常基于一些输入条件(如文本描述、特定样式、语义信息)或随机噪声(如生成对抗网络的输入)。目的是创造出逼真的、具有特定特征的图像。 | ||||
|        * **无条件生成**是指无条件地从数据集中生成样本,即:$p(y)$; | ||||
|        * **条件图像生成**(子任务)是指根据标签有条件地从数据集中生成样本,即:$p(y|x)$ | ||||
|    * **Image Reconstruction**:指从已有的、可能损坏、不完整或压缩的图像数据中恢复原始图像,或者从观测数据中重建图像。目标是尽可能还原出真实图像。 | ||||
|    | ||||
| | **特性**   | 图像生成 (Image Generation) | 图像重建 (Image Reconstruction)   | | ||||
| |--------|------|--------| | ||||
| | **输入**  | 	随机噪声、文本或条件标签等   | 受损图像、不完整数据(如低分辨率图像、部分丢失的像素、模糊图像)   | | ||||
| | **输出**  | 全新的图像,可能是艺术性的、合成的或逼真的   | 修复后的图像,接近原始清晰图像   | | ||||
| | **目标**  | 目标是创造性地生成新图像,关注生成图像的多样性和真实性;注重图像的视觉质量、逼真度以及与输入条件的匹配度。   | 目标是恢复或重建图像,尽可能减少噪声、模糊和失真;注重恢复的准确性和保真度,强调与真实图像的接近程度。 | | ||||
| | **技术方法**  | 典型方法包括生成对抗网络(GANs)、变分自编码器(VAEs)、扩散模型、条件生成模型等   | 通常基于优化和重建技术,包括卷积神经网络(CNNs)、自编码器(Autoencoders)、逆问题求解方法(如去噪、自适应插值)、正则化技术等 | | ||||
| | **应用场景**  | 数字艺术与内容创作(如DALL·E、Stable Diffusion)、数据增强(为训练AI生成多样化样本)、虚拟世界构建(如游戏、元宇宙)、图像翻译(风格迁移、照片转漫画)   | 医学成像(如CT/MRI图像修复)、摄影中的图像去噪、超分辨率重建、遥感影像处理(如卫星图像云层去除)、逆向工程(如压缩图片的质量恢复) | | ||||
| 
 | ||||
| 图像生成更侧重创新性,图像重建更注重还原性,但两者都在提升图像质量和智能处理方面发挥着重要作用。 | ||||
| 
 | ||||
| 我们所希望做的特征还原/图像补全/遮挡还原更倾向于**Image Reconstruction**部分的内容,但可以同时借鉴Generation和Reconstruction两个部分的内容展开。 | ||||
| * 从**Image Generation**的角度:关注补全的多样性和合理性 | ||||
|   * 全局理解: | ||||
|     * MAE需要通过观察未遮挡部分来推测被遮挡区域的内容,这需要全局上下文信息的支持,与图像生成中的全局一致性思路相似。 | ||||
|     * 补全结果不仅要像原图,还需要自然、符合上下文逻辑。 | ||||
|   * 潜在表征学习: | ||||
|     * MAE利用自监督学习,类似生成任务中的生成网络,通过学习隐藏空间(latent space)中的表征来预测缺失区域的可能内容。 | ||||
|   * 去噪补全: | ||||
|     * 与扩散模型类似,MAE可以从不确定性的潜在空间中逐步补全遮挡区域。 | ||||
| * 从**Image Reconstruction**的角度:注重还原真实性 | ||||
|   * 输入部分: | ||||
|     * MAE的输入是遮挡了部分像素的图像,这与图像重建任务中不完整图像作为输入相似。 | ||||
|     * 模型需要从局部上下文信息中恢复被遮挡的区域,这与图像重建强调从不完整数据中提取有用信息的思路一致。 | ||||
|   * 目标: | ||||
|     * 恢复缺失的像素,使得补全后的图像尽可能接近原始图像,注重重建的保真度。 | ||||
|     * MAE的设计目标是通过有效的编码和解码过程,使模型学会图像的局部与整体关系。 | ||||
| 
 | ||||
| 为了实现我们想要的部分,最好是找reconstruction领域去finetune的合理方法以及在generation领域的创新模块表示。除此之外,在segmentation领域找到优化的方案。 | ||||
| 
 | ||||
| 
 | ||||
| # 二、未来规划 | ||||
| 阅读《Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting》以及所总结的和自己相关方向的论文 | ||||
| @ -0,0 +1,26 @@ | ||||
| # Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting | ||||
| * Paper Link:https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Structure_Matters_Tackling_the_Semantic_Discrepancy_in_Diffusion_Models_for_CVPR_2024_paper.pdf | ||||
| * Code Link:https://github.com/htyjers/StrDiffusion | ||||
| 
 | ||||
| ## Abstract | ||||
| 图像修复中的去噪扩散概率模型(DDPMs)旨在正向修复过程中向图像纹理中添加噪声,反向修复过程中利用纹理未被掩盖区域恢复被掩盖区域去噪过程。尽管进行了有意义的语义生成,但现有的方法存在被屏蔽和未屏蔽区域之间的语义差异,因为语义密集的未屏蔽纹理在扩散过程中没有被完全退化,而被屏蔽区域在扩散过程中变成了纯噪声,导致它们之间存在较大的差异。本文旨在回答未掩码语义如何指导纹理去噪过程;以及如何解决语义差异,以促进一致和有意义的语义生成。为此,本文提出了一种基于结构引导的图像修复扩散模型StrDiffusion,该模型在结构指导下对传统的纹理去噪过程进行重新表述,从而得到一个简化的图像修复去噪目标,同时揭示了: | ||||
| * 语义稀疏的结构有利于早期解决语义差异问题,而稠密的纹理则能在后期生成合理的语义; | ||||
| * 得益于结构语义的时变稀疏性,未掩盖区域的语义本质上为纹理去噪过程提供了时变结构指导。在去噪过程中,通过利用掩码区域和未掩码区域之间的去噪结构的一致性,训练一个结构引导的神经网络来估计简化的去噪目标。 | ||||
| * 此外,设计了一种自适应重采样策略,作为结构是否能够指导纹理去噪过程的形式化标准,同时调节其语义相关性。通过大量实验验证了StrDiffusion算法相对于现有算法的优点。 | ||||
| ## 1.Introduction | ||||
| 最近,图像修复支持了广泛的应用,例如照片恢复和图像编辑,其目的是用未掩蔽区域的语义信息恢复图像的掩蔽区域,其原理主要涵盖两个方面:掩蔽区域的合理语义及其与未掩蔽区域语义的一致性。现有的工作主要涉及基于扩散的[2,8]和基于补丁的[1,4,10]方案,该方案倾向于通过简单的颜色信息输入图像的小掩模或重复图案,而无法处理不规则或复杂的掩模。为了解决这个问题,大量的注意力[15,17,31,36]已经转移到卷积神经网络(CNN)上,它致力于在掩码区域周围对局部语义进行编码,而忽略来自未掩码区域的全局信息,导致远离掩码边界的区域保持毛茸。最近,自我注意机制[5,14,16,32,35]被提出以分割图像块的形式将掩蔽区域与未掩蔽区域全局关联,增强了它们之间的语义一致性。然而,这种策略在掩蔽区域内不同斑块之间的语义相关性较差。为此,利用语义稀疏结构[3,7,9,13,18,20,27,28,33,34]来增强它们的相关性,然而,这意味着严重依赖结构和纹理之间的语义一致性,因此不可避免地在内嵌输出中带有伪影。 | ||||
| 
 | ||||
| 幸运的是,去噪扩散概率模型(DDPM)[12,25]已成为强大的生成模型,在语义生成和模式收敛方面取得了显著进展,从而很好地弥补了图像修复语义生成不佳的问题[22,23,29,38]。具体来说,[22]建议采用预训练的DDPM作为先验,而不是专注于训练过程,并开发一种重采样策略来调节推理过程中的反向去噪过程。此外,[23]试图通过利用未掩蔽区域的语义来模拟图像修复的扩散过程,从而为去噪过程提供最佳的反向解决方案。这些方法大多表现出具有DDPM优势的语义有意义的修复结果,而忽略了掩蔽和未掩蔽区域之间的语义一致性。直觉是,语义密集的无掩模纹理退化为无掩模结构和高斯噪声的组合,而掩模区域在扩散过程中变成了纯噪声,导致它们之间存在很大差异(见图1(a)和图2(a)),并引发了以下问题: | ||||
| * 1)*无掩模语义如何指导图像修复的纹理去噪过程?*我们的激励实验建议,当未掩蔽的语义与噪声相结合变得更稀疏时,例如,利用掩蔽图像的灰度或边缘图作为替代,差异问题在很大程度上得到了缓解,同时,在修复结果中损失了大量的语义信息;见图2(b)(c)。因此,未掩蔽区域随时间变化的不变语义无法很好地指导纹理去噪过程。 | ||||
| * 2)在 (1) 之后,人们自然会想知道*如何产生具有一致且有意义的语义的去噪结果*。很明显,稀疏结构在早期阶段有利于语义一致性,而密集纹理在去噪过程中倾向于在后期生成有意义的语义,这意味着去噪结果的一致性和合理语义之间的平衡。为了进一步产生理想的结果,我们将结构的引导视为纹理去噪过程的辅助;见图1(B) | ||||
| ## 2.Structure-Guided Texture Diffusion Models | ||||
| 
 | ||||
| ### 2.1 Preliminaries: Denoising Diffusion Probabilistic Models for Image Inpainting | ||||
| 
 | ||||
| ### 2.2 Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting | ||||
| 
 | ||||
| #### 2.2.1 Structure Matters: Sparse Semantics benefits the Semantic Consistency | ||||
| 
 | ||||
| #### 2.2.2 Optimal Solution to the Denoising Process Under the Guidance of the Structure | ||||
| 
 | ||||
| ### 2.3 Structure-Guided Denoising Process: How does the Structure Guide the Texture Denoising Process? | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user