删除 yolov5_detect.cpp
This commit is contained in:
		
							parent
							
								
									38b371dad3
								
							
						
					
					
						commit
						062679c2d0
					
				| @ -1,374 +0,0 @@ | ||||
| #include <iostream> | ||||
| #include <fstream> | ||||
| #include <vector> | ||||
| #include <cstdint> | ||||
| #include <stdio.h> | ||||
| #include <stdlib.h> | ||||
| #include <math.h> | ||||
| #include <unistd.h> | ||||
| #include <time.h> | ||||
| #include <math.h> | ||||
| #include <fcntl.h> | ||||
| #include <opencv2/opencv.hpp> | ||||
| #include "yolov5_detect.h" | ||||
| #include "rknn_api.h" | ||||
| 
 | ||||
| #include <sys/time.h> | ||||
| 
 | ||||
| using namespace std; | ||||
| using namespace cv; | ||||
| 
 | ||||
| 
 | ||||
| //unsigned char *model;
 | ||||
| //detection* dets;
 | ||||
| 
 | ||||
| static void printRKNNTensor(rknn_tensor_attr *attr) | ||||
| { | ||||
|     printf("index=%d name=%s n_dims=%d dims=[%d %d %d %d] n_elems=%d size=%d " | ||||
|            "fmt=%d type=%d qnt_type=%d fl=%d zp=%d scale=%f\n", | ||||
|            attr->index, attr->name, attr->n_dims, attr->dims[3], attr->dims[2], | ||||
|            attr->dims[1], attr->dims[0], attr->n_elems, attr->size, 0, attr->type, | ||||
|            attr->qnt_type, attr->fl, attr->zp, attr->scale); | ||||
| } | ||||
| 
 | ||||
| static int letter_box(cv::Mat input_image, cv::Mat *output_image, int model_input_size) | ||||
| { | ||||
| 	int input_width, input_height; | ||||
| 
 | ||||
| 	input_width = input_image.cols; | ||||
| 	input_height = input_image.rows; | ||||
| 	float ratio; | ||||
| 	ratio = min((float)model_input_size / input_width, (float)model_input_size / input_height); | ||||
| 
 | ||||
| 	int new_width, new_height; | ||||
| 	new_width = round(ratio * input_width ); | ||||
| 	new_height = round(ratio * input_height); | ||||
| 
 | ||||
| 
 | ||||
| 	int height_padding = 0; | ||||
| 	int width_padding = 0; | ||||
| 	int top = 0; | ||||
| 	int bottom = 0; | ||||
| 	int left = 0; | ||||
| 	int right = 0; | ||||
| 	if( new_width >= new_height) | ||||
| 	{ | ||||
| 		height_padding = new_width - new_height; | ||||
| 		if( (height_padding % 2) == 0 ) | ||||
| 		{ | ||||
| 			top = (int)((float)(height_padding/2)); | ||||
| 			bottom = (int)((float)(height_padding/2)); | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			top = (int)((float)(height_padding/2)); | ||||
| 			bottom = (int)((float)(height_padding/2))+1;	 | ||||
| 		} | ||||
| 	} | ||||
| 	else | ||||
| 	{ | ||||
| 		width_padding = new_height - new_width; | ||||
| 		if( (width_padding % 2) == 0 ) | ||||
| 		{ | ||||
| 			left = (int)((float)(width_padding/2)); | ||||
| 			right = (int)((float)(width_padding/2)); | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			left = (int)((float)(width_padding/2)); | ||||
| 			right = (int)((float)(width_padding/2))+1; | ||||
| 		} | ||||
| 
 | ||||
| 	} | ||||
| 
 | ||||
| 	cv::Mat resize_img; | ||||
| 
 | ||||
| 	cv::resize(input_image, resize_img, cv::Size(new_width, new_height)); | ||||
| 	cv::copyMakeBorder(resize_img, *output_image, top, bottom, left, right, cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0)); | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| int yolov5_detect_init(rknn_context *ctx, const char * path) | ||||
| { | ||||
| 	int ret; | ||||
| 
 | ||||
| 	// Load model
 | ||||
| 	FILE *fp = fopen(path, "rb"); | ||||
| 	if(fp == NULL) | ||||
| 	{ | ||||
| 		printf("fopen %s fail!\n", path); | ||||
| 		return -1; | ||||
| 	} | ||||
| 	fseek(fp, 0, SEEK_END);   //fp指向end,fseek(FILE *stream, long offset, int fromwhere);
 | ||||
| 	int model_len = ftell(fp);   //相对文件首偏移
 | ||||
| 	unsigned char *model_data = (unsigned char*)malloc(model_len); | ||||
| 
 | ||||
| 	fseek(fp, 0, SEEK_SET);   //SEEK_SET为文件头
 | ||||
| 	if(model_len != fread(model_data, 1, model_len, fp)) | ||||
| 	{ | ||||
| 		printf("fread %s fail!\n", path); | ||||
| 		free(model_data); | ||||
| 		return -1; | ||||
| 	} | ||||
| 	fclose(fp); | ||||
| 
 | ||||
| 	//init
 | ||||
| 	ret = rknn_init(ctx, model_data, model_len, RKNN_FLAG_PRIOR_MEDIUM); | ||||
| 	if(ret < 0) | ||||
| 	{ | ||||
| 		printf("rknn_init fail! ret=%d\n", ret); | ||||
| 		return -1; | ||||
| 	} | ||||
| 
 | ||||
| 	free(model_data); | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| static int scale_coords(yolov5_detect_result_group_t *detect_result_group, int img_width, int img_height, int model_size) | ||||
| { | ||||
| 	for (int i = 0; i < detect_result_group->count; i++) | ||||
| 	{ | ||||
| 		yolov5_detect_result_t *det_result = &(detect_result_group->results[i]); | ||||
| 
 | ||||
| 
 | ||||
| 		int x1 = det_result->box.left; | ||||
| 		int y1 = det_result->box.top; | ||||
| 		int x2 = det_result->box.right; | ||||
| 		int y2 = det_result->box.bottom; | ||||
| 
 | ||||
| 		 | ||||
| 		if( img_width >= img_height ) | ||||
| 		{ | ||||
| 			int image_max_len = img_width; | ||||
| 			float gain; | ||||
| 			gain = (float)model_size / image_max_len; | ||||
| 			int resized_height = img_height * gain; | ||||
| 			int height_pading = (model_size - resized_height)/2; | ||||
| 			y1 = (y1 - height_pading); | ||||
| 			y2 = (y2 - height_pading); | ||||
| 			x1 = int(x1 / gain); | ||||
| 			y1 = int(y1 / gain); | ||||
| 			x2 = int(x2 / gain); | ||||
| 			y2 = int(y2 / gain); | ||||
| 
 | ||||
| 			det_result->box.left = x1; | ||||
| 			det_result->box.top = y1; | ||||
| 			det_result->box.right = x2; | ||||
| 			det_result->box.bottom = y2; | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			int image_max_len = img_height; | ||||
| 			float gain; | ||||
| 			gain = (float)model_size / image_max_len; | ||||
| 			int resized_width = img_width * gain; | ||||
| 			int width_pading = (model_size - resized_width)/2; | ||||
| 			x1 = (x1 - width_pading); | ||||
| 			x2 = (x2 - width_pading); | ||||
| 			x1 = int(x1 / gain); | ||||
| 			y1 = int(y1 / gain); | ||||
| 			x2 = int(x2 / gain); | ||||
| 			y2 = int(y2 / gain); | ||||
| 
 | ||||
| 			det_result->box.left = x1; | ||||
| 			det_result->box.top = y1; | ||||
| 			det_result->box.right = x2; | ||||
| 			det_result->box.bottom = y2;	 | ||||
| 		} | ||||
| 		 | ||||
| 	} | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| int yolov5_detect_run(rknn_context ctx, cv::Mat input_image, yolov5_detect_result_group_t *detect_result_group) | ||||
| { | ||||
| 	int img_width = 0; | ||||
| 	int img_height = 0; | ||||
| 	int img_channel = 0; | ||||
| 
 | ||||
| 	size_t actual_size = 0; | ||||
| 	const float vis_threshold = 0.1; | ||||
| 	const float nms_threshold = 0.5; | ||||
| 	const float conf_threshold = 0.2; | ||||
| 	int ret; | ||||
| 
 | ||||
| 	img_width = input_image.cols; | ||||
| 	img_height = input_image.rows; | ||||
| 
 | ||||
| 	rknn_sdk_version version; | ||||
| 	ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, | ||||
| 					 sizeof(rknn_sdk_version)); | ||||
| 	if (ret < 0) | ||||
| 	{ | ||||
| 		printf("rknn_init error ret=%d\n", ret); | ||||
| 		return -1; | ||||
| 	} | ||||
| 	/*
 | ||||
| 	printf("sdk version: %s driver version: %s\n", version.api_version, | ||||
| 		   version.drv_version); | ||||
| 	*/ | ||||
| 
 | ||||
| 	rknn_input_output_num io_num; | ||||
| 	ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); | ||||
| 	if (ret < 0) | ||||
| 	{ | ||||
| 		printf("rknn_init error ret=%d\n", ret); | ||||
| 		return -1; | ||||
| 	} | ||||
| 	/*
 | ||||
| 	printf("model input num: %d, output num: %d\n", io_num.n_input, | ||||
| 		   io_num.n_output); | ||||
| 	*/ | ||||
| 
 | ||||
| 	rknn_tensor_attr input_attrs[io_num.n_input]; | ||||
| 	memset(input_attrs, 0, sizeof(input_attrs)); | ||||
| 	for (int i = 0; i < io_num.n_input; i++) | ||||
| 	{ | ||||
| 		input_attrs[i].index = i; | ||||
| 		ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), | ||||
| 						 sizeof(rknn_tensor_attr)); | ||||
| 		if (ret < 0) | ||||
| 		{ | ||||
| 			printf("rknn_init error ret=%d\n", ret); | ||||
| 			return -1; | ||||
| 		} | ||||
| 		//printRKNNTensor(&(input_attrs[i]));
 | ||||
| 	} | ||||
| 
 | ||||
| 	rknn_tensor_attr output_attrs[io_num.n_output]; | ||||
| 	memset(output_attrs, 0, sizeof(output_attrs)); | ||||
| 	for (int i = 0; i < io_num.n_output; i++) | ||||
| 	{ | ||||
| 		output_attrs[i].index = i; | ||||
| 		ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), | ||||
| 						 sizeof(rknn_tensor_attr)); | ||||
| 		//printRKNNTensor(&(output_attrs[i]));
 | ||||
| 	} | ||||
| 
 | ||||
| 	int input_channel = 3; | ||||
| 	int input_width = 0; | ||||
| 	int input_height = 0; | ||||
| 	if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) | ||||
| 	{ | ||||
| 		//printf("model is NCHW input fmt\n");
 | ||||
| 		input_width = input_attrs[0].dims[0]; | ||||
| 		input_height = input_attrs[0].dims[1]; | ||||
| 	} | ||||
| 	else | ||||
| 	{ | ||||
| 		//printf("model is NHWC input fmt\n");
 | ||||
| 		input_width = input_attrs[0].dims[1]; | ||||
| 		input_height = input_attrs[0].dims[2]; | ||||
| 	} | ||||
| 
 | ||||
| 	/*
 | ||||
| 	printf("model input height=%d, width=%d, channel=%d\n", height, width, | ||||
| 		   channel); | ||||
| 	*/ | ||||
| 
 | ||||
| 	/* Init input tensor */ | ||||
| 	rknn_input inputs[1]; | ||||
| 	memset(inputs, 0, sizeof(inputs)); | ||||
| 	inputs[0].index = 0; | ||||
| 	inputs[0].type = RKNN_TENSOR_UINT8; | ||||
| 	inputs[0].size = input_width * input_height * input_channel; | ||||
| 	inputs[0].fmt = RKNN_TENSOR_NHWC; | ||||
| 	inputs[0].pass_through = 0; | ||||
| 
 | ||||
| 	/* Init output tensor */ | ||||
| 	rknn_output outputs[io_num.n_output]; | ||||
| 	memset(outputs, 0, sizeof(outputs)); | ||||
| 
 | ||||
| 	for (int i = 0; i < io_num.n_output; i++) | ||||
| 	{ | ||||
| 		outputs[i].want_float = 0; | ||||
| 	} | ||||
| 
 | ||||
| 	cv::Mat letter_image; | ||||
| 	letter_box(input_image, &letter_image, input_width); | ||||
| 	inputs[0].buf = letter_image.data; | ||||
| 
 | ||||
| 	rknn_inputs_set(ctx, io_num.n_input, inputs); | ||||
| 	ret = rknn_run(ctx, NULL); | ||||
| 	ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); | ||||
| 
 | ||||
| 	// Post process
 | ||||
| 	std::vector<float> out_scales; | ||||
| 	std::vector<uint8_t> out_zps; | ||||
| 	for (int i = 0; i < io_num.n_output; ++i) | ||||
| 	{ | ||||
| 		out_scales.push_back(output_attrs[i].scale); | ||||
| 		out_zps.push_back(output_attrs[i].zp); | ||||
| 	} | ||||
| 
 | ||||
| 
 | ||||
| 	yolov5_post_process_u8((uint8_t *)outputs[0].buf, (uint8_t *)outputs[1].buf, (uint8_t *)outputs[2].buf, input_height, input_width, | ||||
| 					   conf_threshold, nms_threshold, out_zps, out_scales, detect_result_group); | ||||
| 
 | ||||
| 
 | ||||
| 	/*
 | ||||
| 	yolov5_post_process_fp((float *)outputs[0].buf, (float *)outputs[1].buf, (float *)outputs[2].buf, input_height, input_width, | ||||
| 			            conf_threshold, nms_threshold, &detect_result_group); | ||||
| 	*/ | ||||
| 
 | ||||
| 	rknn_outputs_release(ctx, io_num.n_output, outputs); | ||||
| 
 | ||||
| 	scale_coords(detect_result_group, img_width, img_height, input_width); | ||||
| 
 | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| int yolov5_detect_release(rknn_context ctx) | ||||
| { | ||||
|     rknn_destroy(ctx); | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| std::string base64_encode(unsigned char const* bytes_to_encode, unsigned int in_len) { | ||||
|   std::string ret; | ||||
|   int i = 0; | ||||
|   int j = 0; | ||||
|   unsigned char char_array_3[3]; | ||||
|   unsigned char char_array_4[4]; | ||||
| 
 | ||||
|   while (in_len--) { | ||||
|     char_array_3[i++] = *(bytes_to_encode++); | ||||
|     if (i == 3) { | ||||
|       char_array_4[0] = (char_array_3[0] & 0xfc) >> 2; | ||||
|       char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4); | ||||
|       char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6); | ||||
|       char_array_4[3] = char_array_3[2] & 0x3f; | ||||
| 
 | ||||
|       for(i = 0; (i <4) ; i++) | ||||
|         ret += base64_chars[char_array_4[i]]; | ||||
|       i = 0; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   if (i) { | ||||
|     for(j = i; j < 3; j++) | ||||
|       char_array_3[j] = '\0'; | ||||
| 
 | ||||
|     char_array_4[0] = (char_array_3[0] & 0xfc) >> 2; | ||||
|     char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4); | ||||
|     char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6); | ||||
|     char_array_4[3] = char_array_3[2] & 0x3f; | ||||
| 
 | ||||
|     for (j = 0; (j < i + 1); j++) | ||||
|       ret += base64_chars[char_array_4[j]]; | ||||
| 
 | ||||
|     while((i++ < 3)) | ||||
|       ret += '='; | ||||
|   } | ||||
| 
 | ||||
|   return ret; | ||||
| } | ||||
| 
 | ||||
| static inline bool is_base64(unsigned char c) { | ||||
|   return (isalnum(c) || (c == '+') || (c == '/')); | ||||
| } | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user