上传文件至 src
This commit is contained in:
		
							parent
							
								
									a9eb288f8d
								
							
						
					
					
						commit
						6a65fce840
					
				
							
								
								
									
										470
									
								
								src/yolov5_detect_postprocess.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										470
									
								
								src/yolov5_detect_postprocess.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,470 @@ | |||||||
|  | // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
 | ||||||
|  | //
 | ||||||
|  | // Licensed under the Apache License, Version 2.0 (the "License");
 | ||||||
|  | // you may not use this file except in compliance with the License.
 | ||||||
|  | // You may obtain a copy of the License at
 | ||||||
|  | //
 | ||||||
|  | //     http://www.apache.org/licenses/LICENSE-2.0
 | ||||||
|  | //
 | ||||||
|  | // Unless required by applicable law or agreed to in writing, software
 | ||||||
|  | // distributed under the License is distributed on an "AS IS" BASIS,
 | ||||||
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||||||
|  | // See the License for the specific language governing permissions and
 | ||||||
|  | // limitations under the License.
 | ||||||
|  | 
 | ||||||
|  | #include <stdio.h> | ||||||
|  | #include <stdlib.h> | ||||||
|  | #include <math.h> | ||||||
|  | #include <string.h> | ||||||
|  | #include <sys/time.h> | ||||||
|  | #include <vector> | ||||||
|  | #include "yolov5_detect_postprocess.h" | ||||||
|  | #include <stdint.h> | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | static char labels[YOLOV5_CLASS_NUM][30] = {"0", "1"}; | ||||||
|  | // static char labels[YOLOV5_CLASS_NUM][30] = {"fire"};
 | ||||||
|  | 
 | ||||||
|  | const int anchor0[6] = {10, 13, 16, 30, 33, 23}; | ||||||
|  | const int anchor1[6] = {30, 61, 62, 45, 59, 119}; | ||||||
|  | const int anchor2[6] = {116, 90, 156, 198, 373, 326}; | ||||||
|  | 
 | ||||||
|  | inline static int clamp(float val, int min, int max) | ||||||
|  | { | ||||||
|  |     return val > min ? (val < max ? val : max) : min; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1, float ymax1) | ||||||
|  | { | ||||||
|  |     float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0); | ||||||
|  |     float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0); | ||||||
|  |     float i = w * h; | ||||||
|  |     float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i; | ||||||
|  |     return u <= 0.f ? 0.f : (i / u); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static int nms(int validCount, std::vector<float> &outputLocations, std::vector<int> &order, float threshold) | ||||||
|  | { | ||||||
|  |     for (int i = 0; i < validCount; ++i) | ||||||
|  |     { | ||||||
|  |         if (order[i] == -1) | ||||||
|  |         { | ||||||
|  |             continue; | ||||||
|  |         } | ||||||
|  |         int n = order[i]; | ||||||
|  |         for (int j = i + 1; j < validCount; ++j) | ||||||
|  |         { | ||||||
|  |             int m = order[j]; | ||||||
|  |             if (m == -1) | ||||||
|  |             { | ||||||
|  |                 continue; | ||||||
|  |             } | ||||||
|  |             float xmin0 = outputLocations[n * 4 + 0]; | ||||||
|  |             float ymin0 = outputLocations[n * 4 + 1]; | ||||||
|  |             float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2]; | ||||||
|  |             float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3]; | ||||||
|  | 
 | ||||||
|  |             float xmin1 = outputLocations[m * 4 + 0]; | ||||||
|  |             float ymin1 = outputLocations[m * 4 + 1]; | ||||||
|  |             float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2]; | ||||||
|  |             float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3]; | ||||||
|  | 
 | ||||||
|  |             float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1); | ||||||
|  | 
 | ||||||
|  |             if (iou > threshold) | ||||||
|  |             { | ||||||
|  |                 order[j] = -1; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static int quick_sort_indice_inverse( | ||||||
|  |     std::vector<float> &input, | ||||||
|  |     int left, | ||||||
|  |     int right, | ||||||
|  |     std::vector<int> &indices) | ||||||
|  | { | ||||||
|  |     float key; | ||||||
|  |     int key_index; | ||||||
|  |     int low = left; | ||||||
|  |     int high = right; | ||||||
|  |     if (left < right) | ||||||
|  |     { | ||||||
|  |         key_index = indices[left]; | ||||||
|  |         key = input[left]; | ||||||
|  |         while (low < high) | ||||||
|  |         { | ||||||
|  |             while (low < high && input[high] <= key) | ||||||
|  |             { | ||||||
|  |                 high--; | ||||||
|  |             } | ||||||
|  |             input[low] = input[high]; | ||||||
|  |             indices[low] = indices[high]; | ||||||
|  |             while (low < high && input[low] >= key) | ||||||
|  |             { | ||||||
|  |                 low++; | ||||||
|  |             } | ||||||
|  |             input[high] = input[low]; | ||||||
|  |             indices[high] = indices[low]; | ||||||
|  |         } | ||||||
|  |         input[low] = key; | ||||||
|  |         indices[low] = key_index; | ||||||
|  |         quick_sort_indice_inverse(input, left, low - 1, indices); | ||||||
|  |         quick_sort_indice_inverse(input, low + 1, right, indices); | ||||||
|  |     } | ||||||
|  |     return low; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static float sigmoid(float x) | ||||||
|  | { | ||||||
|  |     return 1.0 / (1.0 + expf(-x)); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static float unsigmoid(float y) | ||||||
|  | { | ||||||
|  |     return -1.0 * logf((1.0 / y) - 1.0); | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | inline static int32_t __clip(float val, float min, float max) | ||||||
|  | { | ||||||
|  |     float f = val <= min ? min : (val >= max ? max : val); | ||||||
|  |     return f; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static uint8_t qnt_f32_to_affine(float f32, uint8_t zp, float scale) | ||||||
|  | { | ||||||
|  |     float dst_val = (f32 / scale) + zp; | ||||||
|  |     uint8_t res = (uint8_t)__clip(dst_val, 0, 255); | ||||||
|  |     return res; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static float deqnt_affine_to_f32(uint8_t qnt, uint8_t zp, float scale) | ||||||
|  | { | ||||||
|  |     return ((float)qnt - (float)zp) * scale; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static int process_u8(uint8_t *input, int *anchor, int grid_h, int grid_w, int height, int width, int stride, | ||||||
|  |                    std::vector<float> &boxes, std::vector<float> &boxScores, std::vector<int> &classId, | ||||||
|  |                    float threshold, uint8_t zp, float scale) | ||||||
|  | { | ||||||
|  | 
 | ||||||
|  |     int validCount = 0; | ||||||
|  |     int grid_len = grid_h * grid_w; | ||||||
|  |     float thres = unsigmoid(threshold); | ||||||
|  |     uint8_t thres_u8 = qnt_f32_to_affine(thres, zp, scale); | ||||||
|  |     for (int a = 0; a < 3; a++) | ||||||
|  |     { | ||||||
|  |         for (int i = 0; i < grid_h; i++) | ||||||
|  |         { | ||||||
|  |             for (int j = 0; j < grid_w; j++) | ||||||
|  |             { | ||||||
|  |                 uint8_t box_confidence = input[(YOLOV5_PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j]; | ||||||
|  |                 if (box_confidence >= thres_u8) | ||||||
|  |                 { | ||||||
|  |                     int offset = (YOLOV5_PROP_BOX_SIZE * a) * grid_len + i * grid_w + j; | ||||||
|  |                     uint8_t *in_ptr = input + offset; | ||||||
|  |                     float box_x = sigmoid(deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5; | ||||||
|  |                     float box_y = sigmoid(deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5; | ||||||
|  |                     float box_w = sigmoid(deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0; | ||||||
|  |                     float box_h = sigmoid(deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0; | ||||||
|  |                     box_x = (box_x + j) * (float)stride; | ||||||
|  |                     box_y = (box_y + i) * (float)stride; | ||||||
|  |                     box_w = box_w * box_w * (float)anchor[a * 2]; | ||||||
|  |                     box_h = box_h * box_h * (float)anchor[a * 2 + 1]; | ||||||
|  |                     box_x -= (box_w / 2.0); | ||||||
|  |                     box_y -= (box_h / 2.0); | ||||||
|  |                     boxes.push_back(box_x); | ||||||
|  |                     boxes.push_back(box_y); | ||||||
|  |                     boxes.push_back(box_w); | ||||||
|  |                     boxes.push_back(box_h); | ||||||
|  | 
 | ||||||
|  |                     uint8_t maxClassProbs = in_ptr[5 * grid_len]; | ||||||
|  |                     int maxClassId = 0; | ||||||
|  |                     for (int k = 1; k < YOLOV5_CLASS_NUM; ++k) | ||||||
|  |                     { | ||||||
|  |                         uint8_t prob = in_ptr[(5 + k) * grid_len]; | ||||||
|  |                         if (prob > maxClassProbs) | ||||||
|  |                         { | ||||||
|  |                             maxClassId = k; | ||||||
|  |                             maxClassProbs = prob; | ||||||
|  |                         } | ||||||
|  |                     } | ||||||
|  |                     float box_conf_f32 = sigmoid(deqnt_affine_to_f32(box_confidence, zp, scale)); | ||||||
|  |                     float class_prob_f32 = sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale)); | ||||||
|  |                     boxScores.push_back(box_conf_f32* class_prob_f32); | ||||||
|  |                     classId.push_back(maxClassId); | ||||||
|  |                     validCount++; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |     return validCount; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | static int process_fp(float *input, int *anchor, int grid_h, int grid_w, int height, int width, int stride, | ||||||
|  |                    std::vector<float> &boxes, std::vector<float> &boxScores, std::vector<int> &classId, | ||||||
|  |                    float threshold) | ||||||
|  | { | ||||||
|  | 
 | ||||||
|  |     int validCount = 0; | ||||||
|  |     int grid_len = grid_h * grid_w; | ||||||
|  |     float thres_sigmoid = unsigmoid(threshold); | ||||||
|  |     for (int a = 0; a < 3; a++) | ||||||
|  |     { | ||||||
|  |         for (int i = 0; i < grid_h; i++) | ||||||
|  |         { | ||||||
|  |             for (int j = 0; j < grid_w; j++) | ||||||
|  |             { | ||||||
|  |                 float box_confidence = input[(YOLOV5_PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j]; | ||||||
|  |                 if (box_confidence >= thres_sigmoid) | ||||||
|  |                 { | ||||||
|  |                     int offset = (YOLOV5_PROP_BOX_SIZE * a) * grid_len + i * grid_w + j; | ||||||
|  |                     float *in_ptr = input + offset; | ||||||
|  |                     float box_x = sigmoid(*in_ptr) * 2.0 - 0.5; | ||||||
|  |                     float box_y = sigmoid(in_ptr[grid_len]) * 2.0 - 0.5; | ||||||
|  |                     float box_w = sigmoid(in_ptr[2 * grid_len]) * 2.0; | ||||||
|  |                     float box_h = sigmoid(in_ptr[3 * grid_len]) * 2.0; | ||||||
|  |                     box_x = (box_x + j) * (float)stride; | ||||||
|  |                     box_y = (box_y + i) * (float)stride; | ||||||
|  |                     box_w = box_w * box_w * (float)anchor[a * 2]; | ||||||
|  |                     box_h = box_h * box_h * (float)anchor[a * 2 + 1]; | ||||||
|  |                     box_x -= (box_w / 2.0); | ||||||
|  |                     box_y -= (box_h / 2.0); | ||||||
|  |                     boxes.push_back(box_x); | ||||||
|  |                     boxes.push_back(box_y); | ||||||
|  |                     boxes.push_back(box_w); | ||||||
|  |                     boxes.push_back(box_h); | ||||||
|  | 
 | ||||||
|  |                     float maxClassProbs = in_ptr[5 * grid_len]; | ||||||
|  |                     int maxClassId = 0; | ||||||
|  |                     for (int k = 1; k < YOLOV5_CLASS_NUM; ++k) | ||||||
|  |                     { | ||||||
|  |                         float prob = in_ptr[(5 + k) * grid_len]; | ||||||
|  |                         if (prob > maxClassProbs) | ||||||
|  |                         { | ||||||
|  |                             maxClassId = k; | ||||||
|  |                             maxClassProbs = prob; | ||||||
|  |                         } | ||||||
|  |                     } | ||||||
|  |                     float box_conf_f32 = sigmoid(box_confidence); | ||||||
|  |                     float class_prob_f32 = sigmoid(maxClassProbs); | ||||||
|  |                     boxScores.push_back(box_conf_f32* class_prob_f32); | ||||||
|  |                     classId.push_back(maxClassId); | ||||||
|  |                     validCount++; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |     return validCount; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | int yolov5_post_process_u8(uint8_t *input0, uint8_t *input1, uint8_t *input2, int model_in_h, int model_in_w, | ||||||
|  |                  float conf_threshold, float nms_threshold, | ||||||
|  |                  std::vector<uint8_t> &qnt_zps, std::vector<float> &qnt_scales, | ||||||
|  |                  yolov5_detect_result_group_t *group) | ||||||
|  | { | ||||||
|  |     static int init = -1; | ||||||
|  |     if (init == -1) | ||||||
|  |     { | ||||||
|  | 	/*
 | ||||||
|  |         int ret = 0; | ||||||
|  |         ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); | ||||||
|  |         if (ret < 0) | ||||||
|  |         { | ||||||
|  |             return -1; | ||||||
|  |         } | ||||||
|  | 	*/ | ||||||
|  |         init = 0; | ||||||
|  |     } | ||||||
|  |     memset(group, 0, sizeof(yolov5_detect_result_group_t)); | ||||||
|  | 
 | ||||||
|  |     std::vector<float> filterBoxes; | ||||||
|  |     std::vector<float> boxesScore; | ||||||
|  |     std::vector<int> classId; | ||||||
|  |     int stride0 = 8; | ||||||
|  |     int grid_h0 = model_in_h / stride0; | ||||||
|  |     int grid_w0 = model_in_w / stride0; | ||||||
|  |     int validCount0 = 0; | ||||||
|  |     validCount0 = process_u8(input0, (int *)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, | ||||||
|  |                           stride0, filterBoxes, boxesScore, classId, conf_threshold, qnt_zps[0], qnt_scales[0]); | ||||||
|  | 
 | ||||||
|  |     int stride1 = 16; | ||||||
|  |     int grid_h1 = model_in_h / stride1; | ||||||
|  |     int grid_w1 = model_in_w / stride1; | ||||||
|  |     int validCount1 = 0; | ||||||
|  |     validCount1 = process_u8(input1, (int *)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, | ||||||
|  |                           stride1, filterBoxes, boxesScore, classId, conf_threshold, qnt_zps[1], qnt_scales[1]); | ||||||
|  | 
 | ||||||
|  |     int stride2 = 32; | ||||||
|  |     int grid_h2 = model_in_h / stride2; | ||||||
|  |     int grid_w2 = model_in_w / stride2; | ||||||
|  |     int validCount2 = 0; | ||||||
|  |     validCount2 = process_u8(input2, (int *)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, | ||||||
|  |                           stride2, filterBoxes, boxesScore, classId, conf_threshold, qnt_zps[2], qnt_scales[2]); | ||||||
|  | 
 | ||||||
|  |     int validCount = validCount0 + validCount1 + validCount2; | ||||||
|  |     // no object detect
 | ||||||
|  |     if (validCount <= 0) | ||||||
|  |     { | ||||||
|  |         return 0; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     std::vector<int> indexArray; | ||||||
|  |     for (int i = 0; i < validCount; ++i) | ||||||
|  |     { | ||||||
|  |         indexArray.push_back(i); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     quick_sort_indice_inverse(boxesScore, 0, validCount - 1, indexArray); | ||||||
|  | 
 | ||||||
|  |     nms(validCount, filterBoxes, indexArray, nms_threshold); | ||||||
|  | 
 | ||||||
|  |     int last_count = 0; | ||||||
|  |     group->count = 0; | ||||||
|  |     /* box valid detect target */ | ||||||
|  |     for (int i = 0; i < validCount; ++i) | ||||||
|  |     { | ||||||
|  | 
 | ||||||
|  |         if (indexArray[i] == -1 || boxesScore[i] < conf_threshold || last_count >= YOLOV5_NUMB_MAX_SIZE) | ||||||
|  |         { | ||||||
|  |             continue; | ||||||
|  |         } | ||||||
|  |         int n = indexArray[i]; | ||||||
|  | 
 | ||||||
|  |         float x1 = filterBoxes[n * 4 + 0]; | ||||||
|  |         float y1 = filterBoxes[n * 4 + 1]; | ||||||
|  |         float x2 = x1 + filterBoxes[n * 4 + 2]; | ||||||
|  |         float y2 = y1 + filterBoxes[n * 4 + 3]; | ||||||
|  |         int id = classId[n]; | ||||||
|  | 
 | ||||||
|  | 	/*
 | ||||||
|  |         group->results[last_count].box.left = (int)((clamp(x1, 0, model_in_w) - w_offset) / resize_scale); | ||||||
|  |         group->results[last_count].box.top = (int)((clamp(y1, 0, model_in_h) - h_offset) / resize_scale); | ||||||
|  |         group->results[last_count].box.right = (int)((clamp(x2, 0, model_in_w) - w_offset) / resize_scale); | ||||||
|  |         group->results[last_count].box.bottom = (int)((clamp(y2, 0, model_in_h)  - h_offset) / resize_scale); | ||||||
|  | 	*/ | ||||||
|  |         group->results[last_count].box.left = (int) clamp(x1, 0, model_in_w); | ||||||
|  |         group->results[last_count].box.top = (int) clamp(y1, 0, model_in_h); | ||||||
|  |         group->results[last_count].box.right = (int) clamp(x2, 0, model_in_w); | ||||||
|  |         group->results[last_count].box.bottom = (int) clamp(y2, 0, model_in_h); | ||||||
|  | 
 | ||||||
|  |         group->results[last_count].prop = boxesScore[i]; | ||||||
|  |         group->results[last_count].class_index = id; | ||||||
|  |         char *label = labels[id]; | ||||||
|  |         strncpy(group->results[last_count].name, label, YOLOV5_NAME_MAX_SIZE); | ||||||
|  | 
 | ||||||
|  |         // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, group->results[last_count].box.top,
 | ||||||
|  |         //        group->results[last_count].box.right, group->results[last_count].box.bottom, label);
 | ||||||
|  |         last_count++; | ||||||
|  |     } | ||||||
|  |     group->count = last_count; | ||||||
|  | 
 | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | int yolov5_post_process_fp(float *input0, float *input1, float *input2, int model_in_h, int model_in_w, | ||||||
|  |                  float conf_threshold, float nms_threshold, | ||||||
|  |                  yolov5_detect_result_group_t *group) | ||||||
|  | { | ||||||
|  |     static int init = -1; | ||||||
|  |     if (init == -1) | ||||||
|  |     { | ||||||
|  | 	/*
 | ||||||
|  |         int ret = 0; | ||||||
|  |         ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); | ||||||
|  |         if (ret < 0) | ||||||
|  |         { | ||||||
|  |             return -1; | ||||||
|  |         } | ||||||
|  | 	*/ | ||||||
|  | 
 | ||||||
|  |         init = 0; | ||||||
|  |     } | ||||||
|  |     memset(group, 0, sizeof(yolov5_detect_result_group_t)); | ||||||
|  | 
 | ||||||
|  |     std::vector<float> filterBoxes; | ||||||
|  |     std::vector<float> boxesScore; | ||||||
|  |     std::vector<int> classId; | ||||||
|  |     int stride0 = 8; | ||||||
|  |     int grid_h0 = model_in_h / stride0; | ||||||
|  |     int grid_w0 = model_in_w / stride0; | ||||||
|  |     int validCount0 = 0; | ||||||
|  |     validCount0 = process_fp(input0, (int *)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, | ||||||
|  |                           stride0, filterBoxes, boxesScore, classId, conf_threshold); | ||||||
|  | 
 | ||||||
|  |     int stride1 = 16; | ||||||
|  |     int grid_h1 = model_in_h / stride1; | ||||||
|  |     int grid_w1 = model_in_w / stride1; | ||||||
|  |     int validCount1 = 0; | ||||||
|  |     validCount1 = process_fp(input1, (int *)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, | ||||||
|  |                           stride1, filterBoxes, boxesScore, classId, conf_threshold); | ||||||
|  | 
 | ||||||
|  |     int stride2 = 32; | ||||||
|  |     int grid_h2 = model_in_h / stride2; | ||||||
|  |     int grid_w2 = model_in_w / stride2; | ||||||
|  |     int validCount2 = 0; | ||||||
|  |     validCount2 = process_fp(input2, (int *)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, | ||||||
|  |                           stride2, filterBoxes, boxesScore, classId, conf_threshold); | ||||||
|  | 
 | ||||||
|  |     int validCount = validCount0 + validCount1 + validCount2; | ||||||
|  |     // no object detect
 | ||||||
|  |     if (validCount <= 0) | ||||||
|  |     { | ||||||
|  |         return 0; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     std::vector<int> indexArray; | ||||||
|  |     for (int i = 0; i < validCount; ++i) | ||||||
|  |     { | ||||||
|  |         indexArray.push_back(i); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     quick_sort_indice_inverse(boxesScore, 0, validCount - 1, indexArray); | ||||||
|  | 
 | ||||||
|  |     nms(validCount, filterBoxes, indexArray, nms_threshold); | ||||||
|  | 
 | ||||||
|  |     int last_count = 0; | ||||||
|  |     group->count = 0; | ||||||
|  |     /* box valid detect target */ | ||||||
|  |     for (int i = 0; i < validCount; ++i) | ||||||
|  |     { | ||||||
|  | 
 | ||||||
|  |         if (indexArray[i] == -1 || boxesScore[i] < conf_threshold || last_count >= YOLOV5_NUMB_MAX_SIZE) | ||||||
|  |         { | ||||||
|  |             continue; | ||||||
|  |         } | ||||||
|  |         int n = indexArray[i]; | ||||||
|  | 
 | ||||||
|  |         float x1 = filterBoxes[n * 4 + 0]; | ||||||
|  |         float y1 = filterBoxes[n * 4 + 1]; | ||||||
|  |         float x2 = x1 + filterBoxes[n * 4 + 2]; | ||||||
|  |         float y2 = y1 + filterBoxes[n * 4 + 3]; | ||||||
|  |         int id = classId[n]; | ||||||
|  | 
 | ||||||
|  | 	/*
 | ||||||
|  |         group->results[last_count].box.left = (int)((clamp(x1, 0, model_in_w) - w_offset) / resize_scale); | ||||||
|  |         group->results[last_count].box.top = (int)((clamp(y1, 0, model_in_h) - h_offset) / resize_scale); | ||||||
|  |         group->results[last_count].box.right = (int)((clamp(x2, 0, model_in_w) - w_offset) / resize_scale); | ||||||
|  |         group->results[last_count].box.bottom = (int)((clamp(y2, 0, model_in_h)  - h_offset) / resize_scale); | ||||||
|  | 	*/ | ||||||
|  |         group->results[last_count].box.left = (int) clamp(x1, 0, model_in_w); | ||||||
|  |         group->results[last_count].box.top = (int) clamp(y1, 0, model_in_h); | ||||||
|  |         group->results[last_count].box.right = (int) clamp(x2, 0, model_in_w); | ||||||
|  |         group->results[last_count].box.bottom = (int) clamp(y2, 0, model_in_h); | ||||||
|  | 	 | ||||||
|  |         group->results[last_count].prop = boxesScore[i]; | ||||||
|  |         group->results[last_count].class_index = id; | ||||||
|  |         char *label = labels[id]; | ||||||
|  |         strncpy(group->results[last_count].name, label, YOLOV5_NAME_MAX_SIZE); | ||||||
|  | 
 | ||||||
|  |         // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, group->results[last_count].box.top,
 | ||||||
|  |         //        group->results[last_count].box.right, group->results[last_count].box.bottom, label);
 | ||||||
|  |         last_count++; | ||||||
|  |     } | ||||||
|  |     group->count = last_count; | ||||||
|  | 
 | ||||||
|  |     return 0; | ||||||
|  | } | ||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user