263 lines
13 KiB
Python
263 lines
13 KiB
Python
|
# Copyright (c) 2024, Tri Dao, Albert Gu.
|
||
|
|
||
|
"""We want triton==2.1.0 or 2.2.0 for this
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
import triton
|
||
|
import triton.language as tl
|
||
|
|
||
|
from einops import rearrange, repeat
|
||
|
|
||
|
|
||
|
def init_to_zero(names):
|
||
|
return lambda nargs: [nargs[name].zero_() for name in names if nargs[name] is not None]
|
||
|
|
||
|
|
||
|
@triton.autotune(
|
||
|
configs=[
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
|
||
|
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=2),
|
||
|
],
|
||
|
key=['chunk_size', 'K', 'IS_CAUSAL'],
|
||
|
)
|
||
|
@triton.jit
|
||
|
def _bmm_chunk_fwd_kernel(
|
||
|
# Pointers to matrices
|
||
|
a_ptr, b_ptr, out_ptr, seq_idx_ptr,
|
||
|
# Matrix dimensions
|
||
|
seqlen, chunk_size, K, ngroups,
|
||
|
stride_a_batch, stride_a_seqlen, stride_a_head, stride_ak,
|
||
|
stride_b_batch, stride_b_seqlen, stride_b_head, stride_bk,
|
||
|
stride_out_batch, stride_out_chunk, stride_out_head, stride_outm, stride_outn,
|
||
|
stride_seq_idx_batch, stride_seq_idx_seqlen,
|
||
|
# Meta-parameters
|
||
|
IS_CAUSAL: tl.constexpr,
|
||
|
dot_dtype: tl.constexpr,
|
||
|
HAS_SEQ_IDX: tl.constexpr,
|
||
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||
|
):
|
||
|
pid_b = tl.program_id(axis=1)
|
||
|
pid_ch = tl.program_id(axis=2)
|
||
|
pid_c = pid_ch // ngroups
|
||
|
pid_h = pid_ch - pid_c * ngroups
|
||
|
num_pid_n = tl.cdiv(chunk_size, BLOCK_SIZE_N)
|
||
|
pid_m = tl.program_id(axis=0) // num_pid_n
|
||
|
pid_n = tl.program_id(axis=0) % num_pid_n
|
||
|
if IS_CAUSAL:
|
||
|
if pid_n * BLOCK_SIZE_N >= (pid_m + 1) * BLOCK_SIZE_M:
|
||
|
return
|
||
|
a_ptr += pid_b * stride_a_batch + pid_c * chunk_size * stride_a_seqlen + pid_h * stride_a_head
|
||
|
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + pid_h * stride_b_head
|
||
|
if HAS_SEQ_IDX:
|
||
|
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
|
||
|
|
||
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||
|
a_ptrs = a_ptr + (offs_m[:, None] * stride_a_seqlen + offs_k[None, :] * stride_ak)
|
||
|
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_b_seqlen)
|
||
|
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
|
||
|
|
||
|
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||
|
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
||
|
a = tl.load(a_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < K - k * BLOCK_SIZE_K), other=0.0).to(dot_dtype)
|
||
|
b = tl.load(b_ptrs, mask=(offs_k[:, None] < K - k * BLOCK_SIZE_K) & (offs_n[None, :] < chunk_size_limit), other=0.0).to(dot_dtype)
|
||
|
acc += tl.dot(a, b)
|
||
|
a_ptrs += BLOCK_SIZE_K * stride_ak
|
||
|
b_ptrs += BLOCK_SIZE_K * stride_bk
|
||
|
|
||
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||
|
if HAS_SEQ_IDX:
|
||
|
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
|
||
|
seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
|
||
|
seq_idx_n = tl.load(seq_idx_ptr + offs_n * stride_seq_idx_seqlen, mask=offs_n < chunk_size_limit, other=-2)
|
||
|
acc = tl.where(seq_idx_m[:, None] == seq_idx_n[None, :], acc, 0.0)
|
||
|
out = acc.to(out_ptr.dtype.element_ty)
|
||
|
|
||
|
out_ptr += pid_b * stride_out_batch + pid_c * stride_out_chunk + pid_h * stride_out_head
|
||
|
out_ptrs = out_ptr + (stride_outm * offs_m[:, None] + offs_n[None, :] * stride_outn)
|
||
|
tl.store(out_ptrs, out, mask=(offs_m[:, None] < chunk_size) & (offs_n[None, :] < chunk_size))
|
||
|
|
||
|
|
||
|
@triton.autotune(
|
||
|
configs=[
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_CS': 64}, num_stages=3, num_warps=8),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_CS': 32}, num_stages=5, num_warps=2),
|
||
|
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=5, num_warps=2),
|
||
|
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=2),
|
||
|
],
|
||
|
key=['chunk_size', 'K'],
|
||
|
)
|
||
|
@triton.jit
|
||
|
def _bmm_chunk_bwd_kernel(
|
||
|
# Pointers to matrices
|
||
|
a_ptr, dout_ptr, db_ptr, res_ptr,
|
||
|
# Matrix dimensions
|
||
|
seqlen, chunk_size, K, ngroups,
|
||
|
stride_a_batch, stride_a_seqlen, stride_a_head, stride_ak,
|
||
|
stride_dout_batch, stride_dout_chunk, stride_dout_head, stride_dout_csize_m, stride_dout_csize_n,
|
||
|
stride_db_batch, stride_db_seqlen, stride_db_head, stride_db_k,
|
||
|
stride_res_batch, stride_res_seqlen, stride_res_head, stride_res_k,
|
||
|
# Meta-parameters
|
||
|
dot_dtype: tl.constexpr,
|
||
|
HAS_RESIDUAL: tl.constexpr,
|
||
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_CS: tl.constexpr,
|
||
|
):
|
||
|
pid_b = tl.program_id(axis=1)
|
||
|
pid_ch = tl.program_id(axis=2)
|
||
|
pid_c = pid_ch // ngroups
|
||
|
pid_h = pid_ch - pid_c * ngroups
|
||
|
num_pid_n = tl.cdiv(K, BLOCK_SIZE_N)
|
||
|
pid_m = tl.program_id(axis=0) // num_pid_n
|
||
|
pid_n = tl.program_id(axis=0) % num_pid_n
|
||
|
|
||
|
a_ptr += pid_b * stride_a_batch + pid_c * chunk_size * stride_a_seqlen + pid_h * stride_a_head
|
||
|
dout_ptr += pid_b * stride_dout_batch + pid_c * stride_dout_chunk + pid_h * stride_dout_head
|
||
|
|
||
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||
|
offs_cs = tl.arange(0, BLOCK_SIZE_CS)
|
||
|
dout_ptrs = dout_ptr + (offs_m[:, None] * stride_dout_csize_n + offs_cs[None, :] * stride_dout_csize_m)
|
||
|
a_ptrs = a_ptr + (offs_cs[:, None] * stride_a_seqlen + offs_n[None, :] * stride_ak)
|
||
|
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
|
||
|
|
||
|
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||
|
for cs in range(0, tl.cdiv(chunk_size_limit, BLOCK_SIZE_CS)):
|
||
|
dout = tl.load(dout_ptrs, mask=(offs_m[:, None] < chunk_size) & (offs_cs[None, :] < chunk_size_limit - cs * BLOCK_SIZE_CS), other=0.0).to(dot_dtype)
|
||
|
a = tl.load(a_ptrs, mask=(offs_cs[:, None] < chunk_size_limit - cs * BLOCK_SIZE_CS) & (offs_n[None, :] < K), other=0.0).to(dot_dtype)
|
||
|
acc += tl.dot(dout, a)
|
||
|
dout_ptrs += BLOCK_SIZE_CS * stride_dout_csize_m
|
||
|
a_ptrs += BLOCK_SIZE_CS * stride_a_seqlen
|
||
|
|
||
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||
|
if HAS_RESIDUAL:
|
||
|
res_ptr += pid_b * stride_res_batch + pid_c * chunk_size * stride_res_seqlen + pid_h * stride_res_head
|
||
|
res_ptrs = res_ptr + (offs_m[:, None] * stride_res_seqlen + offs_n[None, :] * stride_res_k)
|
||
|
res = tl.load(res_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < K)).to(tl.float32)
|
||
|
acc += res
|
||
|
db = acc.to(db_ptr.dtype.element_ty)
|
||
|
|
||
|
db_ptr += pid_b * stride_db_batch + pid_c * chunk_size * stride_db_seqlen + pid_h * stride_db_head
|
||
|
db_ptrs = db_ptr + (offs_m[:, None] * stride_db_seqlen + offs_n[None, :] * stride_db_k)
|
||
|
tl.store(db_ptrs, db, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < K))
|
||
|
|
||
|
|
||
|
def _bmm_chunk_fwd(a, b, chunk_size, seq_idx=None, causal=False, output_dtype=None):
|
||
|
"""
|
||
|
Argument:
|
||
|
a: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
||
|
b: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
||
|
seq_idx: (batch, seqlen) or None. out[i, j] for seq_idx[i] != seq_idx[j] will be zeroed out.
|
||
|
causal: if True, then out[i, j] for i > j will be arbitrary, only out[i, j] for i <= j are
|
||
|
guaranteed to be correct.
|
||
|
Return:
|
||
|
out: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size)
|
||
|
"""
|
||
|
# Check constraints.
|
||
|
has_groups = a.dim() == 4
|
||
|
if not has_groups:
|
||
|
batch, seqlen, k = a.shape
|
||
|
else:
|
||
|
batch, seqlen, ngroups, k = a.shape
|
||
|
assert b.shape == a.shape
|
||
|
if seq_idx is not None:
|
||
|
assert seq_idx.shape == (batch, seqlen)
|
||
|
if a.stride(-1) != 1 and a.stride(1) != 1:
|
||
|
a = a.contiguous()
|
||
|
if b.stride(-1) != 1 and b.stride(1) != 1:
|
||
|
b = b.contiguous()
|
||
|
nchunks = math.ceil(seqlen / chunk_size)
|
||
|
# Allocates output.
|
||
|
out_dtype = a.dtype if output_dtype is None else output_dtype
|
||
|
out = torch.empty((batch, nchunks, chunk_size, chunk_size) if not has_groups else (batch, nchunks, ngroups, chunk_size, chunk_size),
|
||
|
device=a.device, dtype=out_dtype)
|
||
|
dot_dtype = (tl.bfloat16 if a.dtype == torch.bfloat16 or b.dtype == torch.bfloat16 else
|
||
|
(tl.float16 if a.dtype == torch.float16 or b.dtype == torch.float16 else tl.float32))
|
||
|
grid = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(chunk_size, META['BLOCK_SIZE_N']),
|
||
|
batch, nchunks if not has_groups else nchunks * ngroups)
|
||
|
with torch.cuda.device(a.device.index):
|
||
|
_bmm_chunk_fwd_kernel[grid](
|
||
|
a, b, out, seq_idx,
|
||
|
seqlen, chunk_size, k, ngroups if has_groups else 1,
|
||
|
a.stride(0), a.stride(1), 0 if not has_groups else a.stride(2), a.stride(-1),
|
||
|
b.stride(0), b.stride(1), 0 if not has_groups else b.stride(2), b.stride(-1),
|
||
|
out.stride(0), out.stride(1), 0 if not has_groups else out.stride(2), out.stride(-2), out.stride(-1),
|
||
|
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
|
||
|
causal,
|
||
|
dot_dtype,
|
||
|
HAS_SEQ_IDX=seq_idx is not None,
|
||
|
)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def _bmm_chunk_bwd(a, dout, residual=None, out=None):
|
||
|
"""
|
||
|
Argument:
|
||
|
a: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
||
|
dout: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size)
|
||
|
residual: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
||
|
Return:
|
||
|
out: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
||
|
|
||
|
If there was seq_idx in the fwd pass, then dout[i, j] for seq_idx[i] != seq_idx[j] should already be
|
||
|
zeroed out before calling this function.
|
||
|
"""
|
||
|
# Check constraints.
|
||
|
has_groups = a.dim() == 4
|
||
|
if not has_groups:
|
||
|
batch, seqlen, k = a.shape
|
||
|
else:
|
||
|
batch, seqlen, ngroups, k = a.shape
|
||
|
nchunks, chunk_size = dout.shape[1], dout.shape[-1]
|
||
|
if a.stride(-1) != 1 and a.stride(-2) != 1:
|
||
|
a = a.contiguous()
|
||
|
if dout.stride(-1) != 1 and dout.stride(-2) != 1:
|
||
|
dout = dout.contiguous()
|
||
|
if residual is not None:
|
||
|
assert residual.shape == (batch, seqlen, k) if not has_groups else (batch, seqlen, ngroups, k)
|
||
|
if residual.stride(-1) != 1 and residual.stride(1) != 1:
|
||
|
residual = residual.contiguous()
|
||
|
# Allocates output.
|
||
|
if out is not None:
|
||
|
assert out.shape == a.shape
|
||
|
assert out.stride(-1) == 1 or out.stride(1) == 1
|
||
|
else:
|
||
|
out = torch.empty_like(a)
|
||
|
dot_dtype = (tl.bfloat16 if a.dtype == torch.bfloat16 or dout.dtype == torch.bfloat16 else
|
||
|
(tl.float16 if a.dtype == torch.float16 or dout.dtype == torch.float16 else tl.float32))
|
||
|
grid = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(k, META['BLOCK_SIZE_N']), batch,
|
||
|
nchunks if not has_groups else nchunks * ngroups)
|
||
|
residual_strides = ((residual.stride(0), residual.stride(1), 0 if not has_groups else residual.stride(2),
|
||
|
residual.stride(-1))
|
||
|
if residual is not None else (0, 0, 0, 0))
|
||
|
with torch.cuda.device(a.device.index):
|
||
|
_bmm_chunk_bwd_kernel[grid](
|
||
|
a, dout, out, residual,
|
||
|
seqlen, chunk_size, k, ngroups if has_groups else 1,
|
||
|
a.stride(0), a.stride(1), 0 if not has_groups else a.stride(2), a.stride(-1),
|
||
|
dout.stride(0), dout.stride(1), 0 if not has_groups else dout.stride(2), dout.stride(-2), dout.stride(-1),
|
||
|
out.stride(0), out.stride(1), 0 if not has_groups else out.stride(2), out.stride(-1),
|
||
|
residual_strides[0], residual_strides[1], residual_strides[2], residual_strides[3],
|
||
|
dot_dtype,
|
||
|
HAS_RESIDUAL=residual is not None,
|
||
|
)
|
||
|
return out
|