# Copyright (c) 2024, Tri Dao, Albert Gu. """We want triton==2.1.0 or 2.2.0 for this """ import math import torch import torch.nn.functional as F import triton import triton.language as tl from einops import rearrange, repeat def init_to_zero(names): return lambda nargs: [nargs[name].zero_() for name in names if nargs[name] is not None] @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=2), ], key=['chunk_size', 'K', 'IS_CAUSAL'], ) @triton.jit def _bmm_chunk_fwd_kernel( # Pointers to matrices a_ptr, b_ptr, out_ptr, seq_idx_ptr, # Matrix dimensions seqlen, chunk_size, K, ngroups, stride_a_batch, stride_a_seqlen, stride_a_head, stride_ak, stride_b_batch, stride_b_seqlen, stride_b_head, stride_bk, stride_out_batch, stride_out_chunk, stride_out_head, stride_outm, stride_outn, stride_seq_idx_batch, stride_seq_idx_seqlen, # Meta-parameters IS_CAUSAL: tl.constexpr, dot_dtype: tl.constexpr, HAS_SEQ_IDX: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): pid_b = tl.program_id(axis=1) pid_ch = tl.program_id(axis=2) pid_c = pid_ch // ngroups pid_h = pid_ch - pid_c * ngroups num_pid_n = tl.cdiv(chunk_size, BLOCK_SIZE_N) pid_m = tl.program_id(axis=0) // num_pid_n pid_n = tl.program_id(axis=0) % num_pid_n if IS_CAUSAL: if pid_n * BLOCK_SIZE_N >= (pid_m + 1) * BLOCK_SIZE_M: return a_ptr += pid_b * stride_a_batch + pid_c * chunk_size * stride_a_seqlen + pid_h * stride_a_head b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + pid_h * stride_b_head if HAS_SEQ_IDX: seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_m[:, None] * stride_a_seqlen + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_b_seqlen) chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size) acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < K - k * BLOCK_SIZE_K), other=0.0).to(dot_dtype) b = tl.load(b_ptrs, mask=(offs_k[:, None] < K - k * BLOCK_SIZE_K) & (offs_n[None, :] < chunk_size_limit), other=0.0).to(dot_dtype) acc += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) if HAS_SEQ_IDX: chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size) seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1) seq_idx_n = tl.load(seq_idx_ptr + offs_n * stride_seq_idx_seqlen, mask=offs_n < chunk_size_limit, other=-2) acc = tl.where(seq_idx_m[:, None] == seq_idx_n[None, :], acc, 0.0) out = acc.to(out_ptr.dtype.element_ty) out_ptr += pid_b * stride_out_batch + pid_c * stride_out_chunk + pid_h * stride_out_head out_ptrs = out_ptr + (stride_outm * offs_m[:, None] + offs_n[None, :] * stride_outn) tl.store(out_ptrs, out, mask=(offs_m[:, None] < chunk_size) & (offs_n[None, :] < chunk_size)) @triton.autotune( configs=[ triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_CS': 64}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_CS': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=2), ], key=['chunk_size', 'K'], ) @triton.jit def _bmm_chunk_bwd_kernel( # Pointers to matrices a_ptr, dout_ptr, db_ptr, res_ptr, # Matrix dimensions seqlen, chunk_size, K, ngroups, stride_a_batch, stride_a_seqlen, stride_a_head, stride_ak, stride_dout_batch, stride_dout_chunk, stride_dout_head, stride_dout_csize_m, stride_dout_csize_n, stride_db_batch, stride_db_seqlen, stride_db_head, stride_db_k, stride_res_batch, stride_res_seqlen, stride_res_head, stride_res_k, # Meta-parameters dot_dtype: tl.constexpr, HAS_RESIDUAL: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_CS: tl.constexpr, ): pid_b = tl.program_id(axis=1) pid_ch = tl.program_id(axis=2) pid_c = pid_ch // ngroups pid_h = pid_ch - pid_c * ngroups num_pid_n = tl.cdiv(K, BLOCK_SIZE_N) pid_m = tl.program_id(axis=0) // num_pid_n pid_n = tl.program_id(axis=0) % num_pid_n a_ptr += pid_b * stride_a_batch + pid_c * chunk_size * stride_a_seqlen + pid_h * stride_a_head dout_ptr += pid_b * stride_dout_batch + pid_c * stride_dout_chunk + pid_h * stride_dout_head offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_cs = tl.arange(0, BLOCK_SIZE_CS) dout_ptrs = dout_ptr + (offs_m[:, None] * stride_dout_csize_n + offs_cs[None, :] * stride_dout_csize_m) a_ptrs = a_ptr + (offs_cs[:, None] * stride_a_seqlen + offs_n[None, :] * stride_ak) chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size) acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for cs in range(0, tl.cdiv(chunk_size_limit, BLOCK_SIZE_CS)): dout = tl.load(dout_ptrs, mask=(offs_m[:, None] < chunk_size) & (offs_cs[None, :] < chunk_size_limit - cs * BLOCK_SIZE_CS), other=0.0).to(dot_dtype) a = tl.load(a_ptrs, mask=(offs_cs[:, None] < chunk_size_limit - cs * BLOCK_SIZE_CS) & (offs_n[None, :] < K), other=0.0).to(dot_dtype) acc += tl.dot(dout, a) dout_ptrs += BLOCK_SIZE_CS * stride_dout_csize_m a_ptrs += BLOCK_SIZE_CS * stride_a_seqlen offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) if HAS_RESIDUAL: res_ptr += pid_b * stride_res_batch + pid_c * chunk_size * stride_res_seqlen + pid_h * stride_res_head res_ptrs = res_ptr + (offs_m[:, None] * stride_res_seqlen + offs_n[None, :] * stride_res_k) res = tl.load(res_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < K)).to(tl.float32) acc += res db = acc.to(db_ptr.dtype.element_ty) db_ptr += pid_b * stride_db_batch + pid_c * chunk_size * stride_db_seqlen + pid_h * stride_db_head db_ptrs = db_ptr + (offs_m[:, None] * stride_db_seqlen + offs_n[None, :] * stride_db_k) tl.store(db_ptrs, db, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < K)) def _bmm_chunk_fwd(a, b, chunk_size, seq_idx=None, causal=False, output_dtype=None): """ Argument: a: (batch, seqlen, k) or (batch, seqlen, ngroups, k) b: (batch, seqlen, k) or (batch, seqlen, ngroups, k) seq_idx: (batch, seqlen) or None. out[i, j] for seq_idx[i] != seq_idx[j] will be zeroed out. causal: if True, then out[i, j] for i > j will be arbitrary, only out[i, j] for i <= j are guaranteed to be correct. Return: out: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size) """ # Check constraints. has_groups = a.dim() == 4 if not has_groups: batch, seqlen, k = a.shape else: batch, seqlen, ngroups, k = a.shape assert b.shape == a.shape if seq_idx is not None: assert seq_idx.shape == (batch, seqlen) if a.stride(-1) != 1 and a.stride(1) != 1: a = a.contiguous() if b.stride(-1) != 1 and b.stride(1) != 1: b = b.contiguous() nchunks = math.ceil(seqlen / chunk_size) # Allocates output. out_dtype = a.dtype if output_dtype is None else output_dtype out = torch.empty((batch, nchunks, chunk_size, chunk_size) if not has_groups else (batch, nchunks, ngroups, chunk_size, chunk_size), device=a.device, dtype=out_dtype) dot_dtype = (tl.bfloat16 if a.dtype == torch.bfloat16 or b.dtype == torch.bfloat16 else (tl.float16 if a.dtype == torch.float16 or b.dtype == torch.float16 else tl.float32)) grid = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(chunk_size, META['BLOCK_SIZE_N']), batch, nchunks if not has_groups else nchunks * ngroups) with torch.cuda.device(a.device.index): _bmm_chunk_fwd_kernel[grid]( a, b, out, seq_idx, seqlen, chunk_size, k, ngroups if has_groups else 1, a.stride(0), a.stride(1), 0 if not has_groups else a.stride(2), a.stride(-1), b.stride(0), b.stride(1), 0 if not has_groups else b.stride(2), b.stride(-1), out.stride(0), out.stride(1), 0 if not has_groups else out.stride(2), out.stride(-2), out.stride(-1), *((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)), causal, dot_dtype, HAS_SEQ_IDX=seq_idx is not None, ) return out def _bmm_chunk_bwd(a, dout, residual=None, out=None): """ Argument: a: (batch, seqlen, k) or (batch, seqlen, ngroups, k) dout: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size) residual: (batch, seqlen, k) or (batch, seqlen, ngroups, k) Return: out: (batch, seqlen, k) or (batch, seqlen, ngroups, k) If there was seq_idx in the fwd pass, then dout[i, j] for seq_idx[i] != seq_idx[j] should already be zeroed out before calling this function. """ # Check constraints. has_groups = a.dim() == 4 if not has_groups: batch, seqlen, k = a.shape else: batch, seqlen, ngroups, k = a.shape nchunks, chunk_size = dout.shape[1], dout.shape[-1] if a.stride(-1) != 1 and a.stride(-2) != 1: a = a.contiguous() if dout.stride(-1) != 1 and dout.stride(-2) != 1: dout = dout.contiguous() if residual is not None: assert residual.shape == (batch, seqlen, k) if not has_groups else (batch, seqlen, ngroups, k) if residual.stride(-1) != 1 and residual.stride(1) != 1: residual = residual.contiguous() # Allocates output. if out is not None: assert out.shape == a.shape assert out.stride(-1) == 1 or out.stride(1) == 1 else: out = torch.empty_like(a) dot_dtype = (tl.bfloat16 if a.dtype == torch.bfloat16 or dout.dtype == torch.bfloat16 else (tl.float16 if a.dtype == torch.float16 or dout.dtype == torch.float16 else tl.float32)) grid = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(k, META['BLOCK_SIZE_N']), batch, nchunks if not has_groups else nchunks * ngroups) residual_strides = ((residual.stride(0), residual.stride(1), 0 if not has_groups else residual.stride(2), residual.stride(-1)) if residual is not None else (0, 0, 0, 0)) with torch.cuda.device(a.device.index): _bmm_chunk_bwd_kernel[grid]( a, dout, out, residual, seqlen, chunk_size, k, ngroups if has_groups else 1, a.stride(0), a.stride(1), 0 if not has_groups else a.stride(2), a.stride(-1), dout.stride(0), dout.stride(1), 0 if not has_groups else dout.stride(2), dout.stride(-2), dout.stride(-1), out.stride(0), out.stride(1), 0 if not has_groups else out.stride(2), out.stride(-1), residual_strides[0], residual_strides[1], residual_strides[2], residual_strides[3], dot_dtype, HAS_RESIDUAL=residual is not None, ) return out