import os import torch from torch import nn from torch.nn import functional as F module_path = os.path.dirname(__file__) class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(channel)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): rest_dim = [1] * (input.ndim - bias.ndim - 1) input = input.cuda() if input.ndim == 3: return ( F.leaky_relu( input + bias.view(1, *rest_dim, bias.shape[0]), negative_slope=negative_slope ) * scale #增益值,激活函数里的 gain(torch中scale) 是一个增益值,增益值是指的非线性函数稳态时输入幅度与输出幅度的比值,通常被用来乘在激活函数之后使激活函数更加稳定。 ) else: return ( F.leaky_relu( input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope ) * scale )